已知二次函數(shù)y=f(x)的圖象與x軸交于(0,0),(2,0)且有最大值為1.
(1)求y=f(x)的解析式;
(2)設(shè)g(x)=|f(x)|,畫(huà)出g(x)的大致圖象,并指出g(x)的單調(diào)區(qū)間;
(3)若方程g(x)=m恰有四個(gè)不同的解,根據(jù)圖象指出實(shí)數(shù)m的取值范圍.
分析:(1)由二次函數(shù)y=f(x)的圖象與x軸交于(0,0),(2,0)可設(shè)出函數(shù)的交點(diǎn)式(兩點(diǎn)式)方程,然后根據(jù)函數(shù)y=f(x)有最大值1,可求出a值,進(jìn)而得到y(tǒng)=f(x)的解析式;
(2)由g(x)=|f(x)|,結(jié)合二次函數(shù)的圖象和性質(zhì)及函數(shù)圖象的對(duì)折變換法則,即可得到函數(shù)g(x)的圖象,進(jìn)而得到函數(shù)g(x)的單調(diào)區(qū)間;
(3)根據(jù)(2)中函數(shù)g(x)的圖象,分析出m取不同值時(shí),函數(shù)圖象與直線y=m的交點(diǎn)的個(gè)數(shù),易得方程g(x)=m恰有四個(gè)不同的解時(shí),實(shí)數(shù)m的取值范圍.
解答:解:(1)∵二次函數(shù)y=f(x)的圖象與x軸交于(0,0),(2,0)
設(shè)f(x)=ax(x-2)
又∵f(x)有最大值1,則a<0,且-a=1,則a=-1,
∴f(x)=-x(x-2);
(2)二次函數(shù)y=f(x)的圖象如下圖所示:

由圖象可知g(x)的增區(qū)間為(0,1),(2,+∞),減區(qū)間為(-∞,0),(1,2);
(3)因?yàn)榉匠蘥(x)=m的解是g(x)的圖象與直線y=m的交點(diǎn)的橫坐標(biāo),
方程g(x)=m恰有四個(gè)解,說(shuō)明g(x)的圖象與直線y=m恰有四個(gè)交點(diǎn),
由圖象可知0<m<1.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),其中畫(huà)出函數(shù)的圖象然后利用數(shù)形結(jié)合的思想進(jìn)行解答,是此類(lèi)問(wèn)題的解答關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)(x∈R)的圖象過(guò)點(diǎn)(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函數(shù)y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)圖象的頂點(diǎn)是(-1,3),又f(0)=4,一次函數(shù)y=g(x)的圖象過(guò)(-2,0)和(0,2).
(1)求函數(shù)y=f(x)和函數(shù)y=g(x)的解析式;
(2)求關(guān)于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象關(guān)于直線x=2對(duì)稱(chēng),且在x軸上截得的線段長(zhǎng)為2.若f(x)的最小值為-1,求:
(1)函數(shù)f(x)的解析式;
(2)函數(shù)f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象如圖所示:
(1)求函數(shù)y=f(x)的解析式;
(2)根據(jù)圖象寫(xiě)出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)函數(shù)圖象及變換知識(shí),求k的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)=x2+bx+c的圖象過(guò)點(diǎn)(1,13),且函數(shù)y=f(x-
12
)
是偶函數(shù).
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函數(shù)g(x)在[t,2]上的最大值和最小值;
(3)函數(shù)y=f(x)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案