設關于x的一元二次方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010218588347.png)
x
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010218588242.png)
-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010218619400.png)
x+1=0(n∈N)有兩根α和β,且滿足6α-2αβ+6β=3.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102186352093.png)
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010218650721.png)
;
(2)證明:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102186661872.png)
試題分析:(1)(1)根據(jù)韋達定理,得α+β=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010218697477.png)
,α•β=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010218713395.png)
,由6α-2αβ+6β=3
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102187281173.png)
6
(2)證明:因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240102187442134.png)
-12
點評:容易題,應用韋達定理,得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010218744471.png)
的關系,從而有利于進一步證明數(shù)列是等比數(shù)列。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
在數(shù)列{
an}中,已知
a1 = 2,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012558877946.png)
,則
a4等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200516481.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200531727.png)
為常數(shù),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200547584.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200563491.png)
成公比不等于1的等比數(shù)列.
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200578249.png)
的值;
(Ⅱ)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200594633.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200609491.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200625297.png)
項和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011200641388.png)
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742242480.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742273431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240107422891032.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742242480.png)
有一個形如
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742304373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742320921.png)
的通項公式,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742335564.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742367600.png)
,則此通項公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742382348.png)
=_____________________(要求寫出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010742398621.png)
的數(shù)值).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940357454.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940372277.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940388365.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940404712.png)
。數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940419461.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240059404191059.png)
,
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940435433.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940450721.png)
。
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940357454.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940419461.png)
的通項公式;
(2)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940497967.png)
,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940513431.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940372277.png)
項和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940528355.png)
,求使不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940544581.png)
對一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940560475.png)
都成立的最大正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940575313.png)
的值;
(3)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240059405911811.png)
,是否存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940606512.png)
,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940606718.png)
成立?若存在,求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005940622333.png)
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004622197477.png)
各項為正,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004622213520.png)
成等差數(shù)列.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004622228388.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004622197477.png)
的前n項和,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004622259455.png)
=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
將石子擺成如圖4的梯形形狀.稱數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000207431649.png)
為“梯形數(shù)”.根據(jù)圖形的構成,數(shù)列第
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000207447289.png)
項
; 第
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000207478277.png)
項
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240002075092634.png)
查看答案和解析>>