7.如圖所示,該程序框圖輸出的結(jié)果是15.

分析 模擬執(zhí)行框圖,依次寫出每次循環(huán)得到的x,y值,直到滿足條件退出循環(huán),輸出y的值.

解答 解:模擬執(zhí)行程序框圖,可得
①y=20-1=19,x=20+19=39,
②y=18,x=39+18=57;
③y=17,x=57+17=74;
④y=16,x=74+16=90>90不成立;
⑤y=15,x=90+15=105>90成立,所以輸出15;
故答案為:15.

點評 本題主要考查了程序框圖和算法,依次得到每次循環(huán)x,y的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.中央氣象臺在2004年7月15日10:30發(fā)布的一則臺風(fēng)消息:今年第9號熱帶風(fēng)暴“圓規(guī)”的中心今天上午八點鐘已經(jīng)移到了廣東省汕尾市東南方大約440公里的南海東北部海面上,中心附近最大風(fēng)力有9級.請建立適當(dāng)?shù)淖鴺?biāo)系,用坐標(biāo)表示出該臺風(fēng)中心的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.以下命題:
①y=x+$\frac{1}{x}$≥2,
②若a>0,b>0且a+b=2,則ab≤1,
③$\sqrt{x}$+$\frac{4}{\sqrt{x}}$的最小值為4
④a∈R,a2+1>2a.
其中正確命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若$C_n^0$+$2C_n^1$+$4C_n^2$+…+${2^n}C_n^n$=729,則n=6,$C_n^1+C_n^2+C_n^3+…+C_n^n$=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)函數(shù)f(x)=-ex-x圖象上任意一點處的切線為l1,函數(shù)g(x)=ax+2cosx的圖象上總存在一條切線l2,使得l1⊥l2,則實數(shù)a的取值范圍為[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A($\frac{3\sqrt{2}}{2}$,$\frac{7}{4}$),B(3$\sqrt{2}$,$\frac{5}{2}$),動點P滿足|PB|=2|PA|,P的軌跡為曲線C,y軸左側(cè)的點E在直線AB上,圓心為E的圓與x軸相切,且被軸截得的弦長為$\frac{1}{2}$
(Ⅰ)求C和圓E的方程
(Ⅱ)若直線l與圓E相切,且與C恰有一個公共點,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知奇函數(shù)y=f(x),當(dāng)x>0時f(x)=x2-2x,則當(dāng)x<0時,f(x)=-x2-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow a=(1,2)$,點A(-1,1),B(2,y),若向量$\overrightarrow{AB}$∥$\overrightarrow a$,則實數(shù)y的值為( 。
A.5B.7C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,既是奇函數(shù)又在(-∞,+∞)上單調(diào)遞減的是( 。
A.y=$\frac{1}{x}$B.y=x3C.y=-x|x|D.y=e-x

查看答案和解析>>

同步練習(xí)冊答案