在直角坐標(biāo)系xOy中,橢圓=1的左、右焦點(diǎn)分別為F1、F2,點(diǎn)A為橢圓的左頂點(diǎn),橢圓上的點(diǎn)P在第一象限,PF1⊥PF2,圓O的方程為x2+y2=4.

(1)求點(diǎn)P坐標(biāo);

(2)判斷直線PF2與圓O的位置關(guān)系;

(3)是否存在不同于點(diǎn)A的定點(diǎn)B,對于圓O上任意一點(diǎn)M,都有為常數(shù).若存在,求所有滿足條件的點(diǎn)B的坐標(biāo);若不存在,說明理由.

答案:
解析:

  解:(1)設(shè)點(diǎn)P的坐標(biāo)為,由,得

  ,所以 2分

  又,所以,②

  由①②得,,

  所以點(diǎn)P的坐標(biāo)為 4分

  (2)所在直線方程為 6分

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/4698/0020/d8b3027d6a58fcdd4a8e8096daaeb329/C/Image124.gif" width=29 HEIGHT=20>的方程為,所以圓心到直線的距離,

  所以直線相切 8分

  (3)設(shè)M點(diǎn)的坐標(biāo)為,則

  假設(shè)存在點(diǎn),對于上任意一點(diǎn),都有為常數(shù).

  則, 10分

  所以(為常數(shù))恒成立,

  


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點(diǎn)P在射線OA上運(yùn)動,動點(diǎn)Q在y軸的正半軸上運(yùn)動,△POQ的面積為2
3

(1)求線段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線C上的動點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案