【題目】用斜二測畫法畫出圖中水平放置的△OAB的直觀圖.
【答案】詳見解析
【解析】試題分析:將原圖畫在直角坐標系中,再畫出斜二測坐標系,按照橫不變,縱減半,指的是和x軸重合或者平行的線段長度不變,和y軸平行或者重合的線段長度減半,畫出和軸平行或者重合的線段,連起頂點即可。
(1)在已知圖中,以O為坐標原點,以OB所在的直線及垂直于OB的直線分別為x軸與y軸建立平面直角坐標系,過點A作AM垂直x軸于點M,如圖1.另選一平面畫直觀圖,任取一點O′,畫出相應(yīng)的x′軸、y′軸,使∠x′O′y′=45°.
(2)在x′軸上取點B′,M′,使O′B′=OB,O′M′=OM,過點M′作MA′∥y′軸,取M′A′=MA.連接O′A′,B′A′,如圖2.
(3)擦去輔助線,則△O′A′B′為水平放置的△OAB的直觀圖.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2﹣ax,其中a∈R.
(1)當a=0時,求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上有且僅有一個極值點,求實數(shù)a的取值范圍;
(3)若對任意x∈[1,+∞),f(x)≥0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣ a),其中f(x)是偶函數(shù).
(1)求實數(shù)k的值;
(2)求函數(shù)g(x)的定義域;
(3)若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的右焦點與拋物線y2=4x的焦點重合,點M 在橢圓E上. (Ⅰ)求橢圓E的標準方程;
(Ⅱ)設(shè)P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點,若∠APO=∠BPO,(其中O為坐標原點),
求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax+1(a∈R).
(1)若函數(shù)f(x)的圖象在x=1處的切線l垂直于直線y=x,求實數(shù)a的值及直線l的方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x>1,求證:lnx<x﹣1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關(guān)系是“平行相交”,則實數(shù)b的取值范圍為 ( )
A. (, ) B. (0, )
C. (0, ) D. (, )∪(,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1所示的平面圖形中,ABCD是邊長為2的正方形,△HDA和△GDC都是以D為直角頂點的等腰直角三角形,點E是線段GC的中點.現(xiàn)將△HDA和△GDC分別沿著DA,DC翻折,直到點H和G重合為點P.連接PB,得如圖2的四棱錐.
(Ⅰ)求證:PA∥平面EBD;
(Ⅱ)求二面角C﹣PB﹣D大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點.
下列結(jié)論中正確的個數(shù)有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為=a3.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com