【題目】對于兩條平行直線和圓的位置關(guān)系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關(guān)系為“平行相切”;若兩直線都與圓相離,則稱該位置關(guān)系為“平行相離”;否則稱為“平行相交”.已知直線l1ax3y60,l22x(a1)y60與圓Cx2y22xb21(b>0)的位置關(guān)系是“平行相交”,則實數(shù)b的取值范圍為 (   )

A. (, ) B. (0, )

C. (0, ) D. (, )(,+∞)

【答案】D

【解析】C的標準方程為(x+1)2y2b2.由兩直線平行,可得a(a+1)-6=0,解得a=2或a=-3.當(dāng)a=2時,直線l1l2重合,舍去;當(dāng)a=-3時,l1xy-2=0,l2xy+3=0.由l1與圓C相切,得,由l2與圓C相切,得.當(dāng)l1、l2與圓C都外離時, .所以,當(dāng)l1、l2與圓C“平行相交”時,b滿足,故實數(shù)b的取值范圍是(, )∪(,+∞).故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學(xué)期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是偶函數(shù).
(1)求 的值;
(2)若函數(shù) 沒有零點,求 得取值范圍;
(3)若函數(shù) , 的最小值為0,求實數(shù) 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用斜二測畫法畫出圖中水平放置的△OAB的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=x (m∈Z)為偶函數(shù),且在(0,+∞)上是增函數(shù),則f(2)的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某圓拱橋的示意圖如圖所示,該圓拱的跨度AB36 m拱高OP6 m,在建造時,每隔3 m需用一個支柱支撐求支柱A2P2的長(精確到0.01 m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,BCDCAEDC,MN分別是AD,BE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).

①不論D折至何位置(不在平面ABC內(nèi)),都有MN∥平面DEC;②不論D折至何位置,都有MNAE;③不論D折至何位置(不在平面ABC內(nèi)),都有MNAB;④在折起過程中,一定存在某個位置,使ECAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)f(x)=ax2+bx+c(a、b∈R)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,﹣1]上,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2 , 過點F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點,AF2、BF2分別交y軸于P、Q兩點,若△PQF2的周長為12,則ab取得最大值時該雙曲線的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

同步練習(xí)冊答案