已知橢圓C:=1(a>0,b>0)的離心率與雙曲線=1的一條漸近線的斜率相等以原點為圓心,橢圓的短半軸長為半徑的圓與直線sin·x+cos·y-l=0相切(為常數(shù)).
(1)求橢圓C的方程;
(2)若過點M(3,0)的直線與橢圓C相交TA,B兩點,設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)t取值范圍.

(1) ;(2)

解析試題分析:(1)此問主要考察橢圓與雙曲線的性質,橢圓的離心率與雙曲線的性質相等,則,利用直線與圓相切得到圓心到直線的距離等于半徑,解出,然后利用,解出,得到方程;
(2)典型的直線與圓錐曲線相交問題,首先方程聯(lián)立,寫出根與系數(shù)的關系,代入向量相等的坐標表示,得出點坐標,利用點在橢圓上,代入方程,然后利用,利用弦長公式,得到的范圍,與之前得到的的關系式,求出的范圍.
試題解析:(I)由題意知雙曲線的一漸近線斜率值為
,
因為,所以.故橢圓的方程為    5分
(Ⅱ)設?方程為?
?整理得
,解得
        7分
  則,
, 由點在橢圓上,代入橢圓方程得
①         9分
又由,即,
,
代入得
, ∴②      11分
由①,得,聯(lián)立②,解得
        13分
考點:1.圓錐曲線的性質;2.直線與圓錐曲線相交問題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C1和動圓C2,直線與C1和C2分別有唯一的公共點A和B.
(I)求的取值范圍;
(II )求|AB|的最大值,并求此時圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓C:的離心率,右焦點到直線1的距離,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A、B兩點,證明點O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

直線y=kx+b與曲線交于A、B兩點,記△AOB的面積為S(O是坐標原點).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,矩形ABCD中,|AB|=4,|BC|=2,E,F(xiàn),M,N分別是矩形四條邊的中點,G,H分別是線段ON,CN的中點.
(1)證明:直線EG與FH的交點L在橢圓W:上;
(2)設直線l:與橢圓W:有兩個不同的交點P,Q,直線l與矩形ABCD有兩個不同的交點S,T,求的最大值及取得最大值時m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓經(jīng)過橢圓的右焦點和上頂點
(1)求橢圓的方程;
(2)過原點的射線與橢圓在第一象限的交點為,與圓的交點為,的中點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線-y2=1的左、右頂點分別為A1,A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點.求直線A1P與A2Q交點的軌跡E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖).
(1)求點P的坐標;
(2)焦點在x軸上的橢圓C過點P,且與直線交于A,B兩點,若的面積為2,求C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

以拋物線的焦點為圓心,半徑為2的圓的標準方程為     

查看答案和解析>>

同步練習冊答案