(2012•深圳一模)已知點P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運動,則z=x-y的最小值是( 。
分析:已知可行域畫可行域不等式組
x-2≤0
y-1≤0
x+2y-2≥0
,根據(jù)z為目標(biāo)函數(shù)縱截距,畫直線0=x-y.平移可得直線,可得z的最值.
解答:解:∵不等式組
x-2≤0
y-1≤0
x+2y-2≥0

畫可行域如圖,畫直線0=x-y,
∵z=x-y
平移直線0=x-y過點A(0,1)時z有最小值zmin=0-1=-1;
則z=x-y的最小值為-1,
故選A;
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)隨機調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別有關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視 看書 合計
10 50 60
10 10 20
合計 20 60 80
(1)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時間段的休閑方式與性別有關(guān)系”?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知等比數(shù)列{an}的第5項是二項式(
x
-
1
3x
)6
展開式的常數(shù)項,則a3a7=
25
9
25
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)如圖,平行四邊形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD將△BCD折起,使二面角A-BD-C是大小為銳角α的二面角,設(shè)C在平面ABD上的射影為O.

(1)當(dāng)α為何值時,三棱錐C-OAD的體積最大?最大值為多少?
(2)當(dāng)AD⊥BC時,求α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知數(shù)列{an}滿足:a1=
1
2
,an+1=
an
enan+e
,n∈N*
(其中e為自然對數(shù)的底數(shù)).
(1)求數(shù)列{an}的通項an;
(2)設(shè)Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求證:Sn
n
n+1
,Tne-n2

查看答案和解析>>

同步練習(xí)冊答案