16.設(shè)命題p:方程$\frac{x^2}{m-1}+\frac{y^2}{m+2}=1$表示雙曲線,命題q:關(guān)于x的方程x2+mx+4=0有實(shí)數(shù)解.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)求使“p∨q”為假命題的實(shí)數(shù)m的取值范圍.

分析 (1)當(dāng)命題p為真命題時(shí),得(m-1)(m+2)<0,解得m;
(2)“p∨q”為假命題時(shí),p,q都是假命題,求兩個(gè)命題為假時(shí)實(shí)數(shù)m的取值范圍的交集.

解答 解:(1)當(dāng)命題p為真命題時(shí),方程$\frac{x^2}{m-1}+\frac{y^2}{m+2}=1$表示雙曲線,
所以(m-1)(m+2)<0,解得-2<m<1…(4分)
(2)當(dāng)命題q為假命題時(shí),△=m2-16<0,解得-4<m<4…(7分)
當(dāng)“p∨q”為假命題時(shí),p,q都是假命題,所以$\left\{\begin{array}{l}m≥1或m≤-2\\-4<m<4\end{array}\right.$…(9分)
所以-4<m≤2或1≤m<4…(11分)
所以m的取值范圍為(-4,-2]∪[1,4)…(12分)

點(diǎn)評(píng) 本題考查了命題p∨q真假的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=2sinxcosx+\sqrt{3}cos2x+2$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{-\frac{π}{3},\frac{π}{3}}]$上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.sin20°cos10°-cos200°sin10°等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若$tanθ+\frac{1}{tanθ}=\sqrt{5}$,則sin2θ=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知平行直線l1:2x+y-1=0,l2:2x+y+1=0,則l1,l2的距離$\frac{2\sqrt{5}}{5}$;點(diǎn)(0,2)到直線l1的距離$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其體積為( 。
A.$\frac{10}{3}$B.$\frac{8}{3}$C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,三內(nèi)角A、B、C對(duì)應(yīng)的邊分別為a、b、c,且a=1,$A=\frac{π}{6}$.
(Ⅰ)當(dāng)$b=\sqrt{3}$,求角B的大小;
(Ⅱ)求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3+m.
(1)試用定義證明:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)若關(guān)于x的不等式f(x)≥x3+3x2-3x在區(qū)間[1,2]上有解,求m的取值范圍.參考公式:a3-b3=(a-b)(a2+ab+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.寫出命題“?x∈R,ax2+4x+1>0”的否定形式:?x∈R,ax2+4x+1≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案