在四面體OABC中,∠AOB=∠BOC=∠COA=90°,OA=a,OB=b,OC=c,則下列命題:
①對(duì)棱中點(diǎn)連線長(zhǎng)相等;        
②不含直角的底面△ABC是鈍角三角形;
③外接球半徑R=
1
2
a2+b2+c2
;
④直角頂點(diǎn)O在底面上的射影H是△ABC的外心;
⑤S2△BOC+S2△AOB+S2△AOC=S2△ABC
其中正確命題的序號(hào)是
 
.(把你認(rèn)為正確命題的序號(hào)都填上)
考點(diǎn):命題的真假判斷與應(yīng)用,棱錐的結(jié)構(gòu)特征
專(zhuān)題:空間位置關(guān)系與距離
分析:如圖所示,①對(duì)棱中點(diǎn)連線長(zhǎng)可看作矩形的對(duì)角線,因此相等;
②不妨設(shè)a≥b≥c,則
a2+c2
+
b2+c2
>a+b
a2+b2
,因此可得最大角A為銳角,因此為銳角三角形;
③把四面體OABC的四個(gè)頂點(diǎn)看作長(zhǎng)方體的四個(gè)頂點(diǎn),則外接球半徑R=
1
2
a2+b2+c2
;
④直角頂點(diǎn)O在底面上的射影H是△ABC的垂心;
⑤V四面體OABC=
1
3
×
1
2
ab×c
=
1
3
h•S△ABC
,而
1
2
ab
a2+b2
=
1
2
h
c2+(
ab
a2+b2
)2
,化為h=
abc
a2b2+a2c2+b2c2
.可得S△ABC,S2△BOC+S2△AOB+S2△AOC=(
1
2
bc)2
+(
1
2
ab)2
+(
1
2
ac)2
,化簡(jiǎn)即可判斷出.
解答: 解:如圖所示,
①對(duì)棱中點(diǎn)連線長(zhǎng)可看作矩形的對(duì)角線,因此相等;
②不妨設(shè)a≥b≥c,則
a2+c2
+
b2+c2
>a+b
a2+b2
,因此可得最大角A為銳角,因此為銳角三角形,不含直角的底面△ABC不是鈍角三角形,因此不正確;
③把四面體OABC的四個(gè)頂點(diǎn)看作長(zhǎng)方體的四個(gè)頂點(diǎn),則外接球半徑R=
1
2
a2+b2+c2
,正確;
④直角頂點(diǎn)O在底面上的射影H是△ABC的垂心,不是外心;
⑤V四面體OABC=
1
3
×
1
2
ab×c
=
1
3
h•S△ABC
,
1
2
ab
a2+b2
=
1
2
h
c2+(
ab
a2+b2
)2
,化為h=
abc
a2b2+a2c2+b2c2

∴S△ABC=
abc
2h
,
∴S2△ABC=
a2b2c2(a2b2+a2c2+b2c2)
4a2b2c2
=
1
4
(a2b2+a2c2+b2c2)

S2△BOC+S2△AOB+S2△AOC=(
1
2
bc)2
+(
1
2
ab)2
+(
1
2
ac)2
=
1
4
(a2b2+a2c2+b2c2)
,
∴S2△BOC+S2△AOB+S2△AOC=S2△ABC,正確.
綜上可得:只有①③⑤正確.
故答案為:①③⑤.
點(diǎn)評(píng):本題綜合考查了由三條相鄰棱相互垂直的四面體的特殊性質(zhì),考查了推理能力和計(jì)算能力,考查了空間想象能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直角梯形PBCD中,PD∥BC,∠D=90°,PD=9,BC=3,CD=4,點(diǎn)A在PD上,且PA=2AD,將△PAB沿AB折到△SAB的位置,使SB⊥BC.
(Ⅰ)求證:SA⊥AD;
(Ⅱ)點(diǎn)E在SD上,且SE=
1
3
SD,求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)切圓的三邊AB,BC,CA的切點(diǎn)分別為D,E,F(xiàn),已知B(-
2
,0),C(
2
,0),內(nèi)切圓圓心為I(1,t)(t≠0),設(shè)點(diǎn)A的軌跡為L(zhǎng).
(1)求L的方程;
(2)設(shè)直線y=2x+m交曲線L于不同的兩點(diǎn)M,N,當(dāng)|MN|=2
5
時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(cos x,sin x),
b
=(1,x),函數(shù)f(x)=
a
b
,其中x>0.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈(0,11π]時(shí),求f(x)所有極值的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司招聘員工,現(xiàn)有兩位專(zhuān)家面試,若兩位專(zhuān)家都同意通過(guò),則視作通過(guò)初審予以錄用;若這兩位專(zhuān)家都不同意通過(guò),則視作初審不予錄用;當(dāng)這兩位專(zhuān)家意見(jiàn)不一致時(shí),再由第三位專(zhuān)家進(jìn)行復(fù)審,若能通過(guò)復(fù)審則予以錄用,否則不予錄用,設(shè)應(yīng)聘人員獲得每位初審專(zhuān)家通過(guò)的概率均為0.5,復(fù)審能通過(guò)的概率為0.3,各專(zhuān)家評(píng)審的結(jié)果相互獨(dú)立.
(1)求某應(yīng)聘人員被錄用的概率;
(2)若4人應(yīng)聘,設(shè)X為被錄用的人數(shù),試求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義運(yùn)算a*b為:a*b=
a(a≤b)
b(a>b)
,如1*2=1,則函數(shù)f(x)=2x*2-x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一條直線l上有相異三個(gè)點(diǎn)A、B、C到平面α的距離相等,那么直線l與平面α的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的是
 

①BD∥平面CB1D1;
②AC1⊥平面CB1D1;
③AC1與底面ABCD所成角的正切值是
2
;
④CB1與BD為異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點(diǎn)F的一條直線與該雙曲線有且只有一個(gè)交點(diǎn),且交點(diǎn)的橫坐標(biāo)為2a,則該雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案