正方體ABCD-A1B1C1D1的棱長為1,在正方體表面上與點(diǎn)A距離是的點(diǎn)形成一條曲線,這條曲線的長度是( )

A.
B.
C.
D.
【答案】分析:本題首先要弄清楚曲線的形狀,再根據(jù)曲線的性質(zhì)及解析幾何知識即可求出長度.
解答:解:由題意,此問題的實(shí)質(zhì)是以A為球心、為半徑的球在正方體ABCD-A1B1C1D1各個(gè)面上交線的長度計(jì)算,
正方體的各個(gè)面根據(jù)與球心位置關(guān)系分成兩類:ABCD、AA1DD1、AA1BB1為過球心的截面,截痕為大圓弧,
各弧圓心角為 、A1B1C1D1、B1BCC1、D1DCC1為與球心距離為1的截面,
截痕為小圓弧,由于截面圓半徑為r=,故各段弧圓心角為
∴這條曲線長度為3•+3•=
故選D.
點(diǎn)評:本題考查弧長公式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)觀察,避免出錯(cuò).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的各頂點(diǎn)均在半徑為1的球面上,則四面體A1-ABC的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
(1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
(2)求異面直線B1D1與C1D所成的角;
(3)如果用圖示中這樣一個(gè)裝置來盛水,那么最多可以盛多少體積的水.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點(diǎn),H為BB1上靠近B的三等分點(diǎn),G是EF的中點(diǎn).
(1)求A1H與平面EFH所成角的正弦值;
(2)設(shè)點(diǎn)P在線段GH上,
GP
GH
=λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點(diǎn)是P,過點(diǎn)A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點(diǎn),過A1,M,C三點(diǎn)的平面與CD所成角正弦值( 。

查看答案和解析>>

同步練習(xí)冊答案