13.已知函數(shù)f(x)=sinx,g(x)=$\sqrt{3}$cosx,直線x=m與f(x),g(x)的圖象分別交于M,N兩點,則|MN|的最大值為(  )
A.2B.$\sqrt{2}$C.2$\sqrt{2}$D.4

分析 |MN|=|sinx-$\sqrt{3}$cosx|,利用兩角差的正弦函數(shù)公式即可得出|MN|的最大值.

解答 解:|MN|=|sinx-$\sqrt{3}$cosx|=|2($\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx)|=|2sin(x-$\frac{π}{3}$)|.
∴|MN|的最大值為2.
故選:A.

點評 本題考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.過圓(x-1)2+(y+2)2=16上一點(1,2)的圓的切線方程是y=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.直線l:y=kx與曲線C:y=x3-4x2+3x順次相交于A,B,C三點,若|AB|=|BC|,則k=( 。
A.-5B.-$\frac{5}{9}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在下列通項公式所表示的數(shù)列中,不是等差數(shù)列的是(  )
A.an=lg2nB.an=13nC.an=9-2nD.an=n2-n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,a,b,c分別為角A,B,C的對邊,且$\frac{c}$=-3cosA,tanB=$\frac{1}{2}$.
(1)求tanA;
(2)若b=$\sqrt{5}$,求sinC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.將函數(shù)y=(x+1)2的圖象按向量$\overrightarrow{a}$經(jīng)過一次平移后,得到y(tǒng)=x2的圖象,則向量$\overrightarrow{a}$=(  )
A.(0,1)B.(0,-1)C.(-1,0)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若數(shù)列{an}的首項為1,且2an+1-an=2,
(1)求證:{an-2}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)若bn=-n(an-2),求證:數(shù)列{bn}的前n項和Sn<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知矩形ABCD的邊長AB=1,兩條相互垂直的線段把該矩形分成四個小矩形,要求其中一個小矩形面積不小于2,另外三個小矩形的面積均不小于1,則矩形的邊AD長度的最小值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系中,已知動點M到兩定點F1(-1,0)和F2(1,0)的距離之和為2$\sqrt{2}$,過點F1作直線與M的軌跡交于A,B兩點.
(1)求動點M的軌跡方程;
(2)求△ABF2的周長.

查看答案和解析>>

同步練習冊答案