已知焦距為的雙曲線的焦點(diǎn)在x軸上,且過(guò)點(diǎn)P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過(guò)該雙曲線的右焦點(diǎn)且斜率為1,求直線m被雙曲線截得的弦長(zhǎng).

(1) ;(2)|AB|="6" 。

解析試題分析:(1)設(shè)雙曲線方程為(a,b>0)
左右焦點(diǎn)F1、F2的坐標(biāo)分別為(-2,0)(2,0)           1分
則|PF1|-|PF2|=2=2,所以=1,            ,3分
又c=2,b=                             5分
所以方程為                       6分
(2)直線m方程為y=x-2                        7分
聯(lián)立雙曲線及直線方程消y得2 x2 +4x-7=0                     9分
設(shè)兩交點(diǎn),         x1+x2=-2,    x1x2=-3.5        10分
由弦長(zhǎng)公式得|AB|=6                          12分
考點(diǎn):雙曲線的定義、幾何性質(zhì)、標(biāo)準(zhǔn)方程,直線與雙曲線的位置關(guān)系。
點(diǎn)評(píng):中檔題,求圓錐曲線的標(biāo)準(zhǔn)方程,往往利用定義或曲線的幾何性質(zhì),確定a,b,c,e等。涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。本題直接利用弦長(zhǎng)公式,計(jì)算較為簡(jiǎn)便。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,分別是橢圓的左、右焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)是圓的一條直徑的兩個(gè)端點(diǎn)。
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線被橢圓和圓所截得的弦長(zhǎng)分別為。當(dāng)最大時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:圓過(guò)橢圓的兩焦點(diǎn),與橢圓有且僅有兩個(gè)公共點(diǎn):直線與圓相切 ,與橢圓相交于A,B兩點(diǎn)記 
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是(0,),(0,),又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過(guò)點(diǎn),求弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓
(Ⅰ)設(shè)橢圓的半焦距,且成等差數(shù)列,求橢圓的方程;
(Ⅱ)設(shè)(1)中的橢圓與直線相交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓過(guò)點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線與橢圓的交點(diǎn)分別為、、,為坐標(biāo)原點(diǎn).設(shè)直線、的斜率分別為

(i)證明:;
(ii)問(wèn)直線上是否存在點(diǎn),使得直線、的斜率、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù))的圖象恒過(guò)定點(diǎn),橢圓
)的左,右焦點(diǎn)分別為,,直線經(jīng)過(guò)點(diǎn)且與⊙相切.
(1)求直線的方程;
(2)若直線經(jīng)過(guò)點(diǎn)并與橢圓軸上方的交點(diǎn)為,且,求內(nèi)切圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案