已知橢圓的對稱軸為坐標軸,焦點是(0,),(0,),又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標系xOy中,過橢圓M:右焦點的直線交于A,B兩點,P為AB的中點,且OP的斜率為.
(Ι)求M的方程;
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系曲線C的極坐標方程為cos()=1,M,N分別為C與x軸,y軸的交點。
(I)寫出C的直角坐標方程,并求M,N的極坐標;
(II)設(shè)MN的中點為P,求直線OP的極坐標方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓與離心率為的橢圓()相切于點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點引兩條互相垂直的兩直線、與兩曲線分別交于點、與點、(均不重合).
(ⅰ)若為橢圓上任一點,記點到兩直線的距離分別為、,求的最大值;
(ⅱ)若,求與的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點P(4, 4),圓C:與橢圓E:有一個公共點A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個動點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系中,射線OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),過點P(1,0)作直線分別交射線OA、OB于A、B兩點.
(1)當AB中點為P時,求直線AB的方程;
(2)當AB中點在直線上時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦距為的雙曲線的焦點在x軸上,且過點P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上.若橢圓上的點到焦點、的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標;
(2)過點的直線與橢圓交于兩點、,當的面積取得最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以,為焦點的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標準方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com