【題目】某網(wǎng)站對(duì)“愛(ài)飛客”飛行大會(huì)的日關(guān)注量x(萬(wàn)人)與日點(diǎn)贊量y(萬(wàn)次)進(jìn)行了統(tǒng)計(jì)對(duì)比,得到表格如下:

x

3

5

6

7

9

y

2

3

3

4

5

由散點(diǎn)圖象知,可以用回歸直線(xiàn)方程 來(lái)近似刻畫(huà)它們之間的關(guān)系.
(Ⅰ)求出y關(guān)于x的回歸直線(xiàn)方程,并預(yù)測(cè)日關(guān)注量為10萬(wàn)人時(shí)的日點(diǎn)贊量;
(Ⅱ)一個(gè)三口之家參加“愛(ài)飛客”親子游戲,游戲規(guī)定:三人依次從裝有3個(gè)白球和2個(gè)紅球的箱子中不放回地各摸出一個(gè)球,大人摸出每個(gè)紅球得獎(jiǎng)金10元,小孩摸出1個(gè)紅球得獎(jiǎng)金50元.求該三口之家所得獎(jiǎng)金總額不低于50元的概率.
參考公式:b= ; 參考數(shù)據(jù): =200, =112.

【答案】解:(Ⅰ)由 =6, =3.4, 得: =0.5, =0.4,
∴回歸直線(xiàn)方程為y=0.5x+0.4,
當(dāng)x=10時(shí), ,
即日關(guān)注量為10萬(wàn)人時(shí)的日點(diǎn)贊量5.4萬(wàn)次.
(Ⅱ)設(shè)獎(jiǎng)金總額為ξ,
,
,
∴獎(jiǎng)金總額不低于50元的概率為
【解析】(Ⅰ)結(jié)合所給的數(shù)據(jù)求出 的值,求出回歸方程即可;(Ⅱ)分別求出P(ξ=50)和P(ξ=60)的概率,從而求出滿(mǎn)足條件的答案即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosωxsin(ωx﹣ )+ cos2ωx﹣ (ω>0,x∈R),且函數(shù)y=f(x)圖象的一個(gè)對(duì)稱(chēng)中心到它對(duì)稱(chēng)軸的最近距離為
(1)求ω的值及f(x)的對(duì)稱(chēng)軸方程;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=0,sinB= ,a= ,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種新產(chǎn)品投放市場(chǎng)的100天中,前40天價(jià)格呈直線(xiàn)上升,而后60天其價(jià)格呈直線(xiàn)下降,現(xiàn)統(tǒng)計(jì)出其中4天的價(jià)格如下表:

時(shí)間

第4天

第32天

第60天

第90天

價(jià)格(千元)

23

30

22

7

(Ⅰ)寫(xiě)出價(jià)格f(x)關(guān)于時(shí)間x的函數(shù)關(guān)系式(x表示投放市場(chǎng)的第x天,x∈N*);
(Ⅱ)銷(xiāo)售量g(x)與時(shí)間x的函數(shù)關(guān)系式為 ,則該產(chǎn)品投放市場(chǎng)第幾天的銷(xiāo)售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某客運(yùn)公司用A,B兩種型號(hào)的車(chē)輛承擔(dān)甲、乙兩地間的長(zhǎng)途客運(yùn)業(yè)務(wù),每車(chē)每天往返一次.A,B兩種車(chē)輛的載客量分別為36人和60人,在甲地和乙地之間往返一次的營(yíng)運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過(guò)21輛車(chē)的客運(yùn)車(chē)隊(duì),并要求B型車(chē)不多于A型車(chē)7輛.若每天要運(yùn)送不少于900人從甲地去乙地的旅客,并于當(dāng)天返回,為使公司從甲地去乙地的營(yíng)運(yùn)成本最小,那么應(yīng)配備A型車(chē)、B型車(chē)各多少輛?營(yíng)運(yùn)成本最小為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,A(1,3),BC邊所在的直線(xiàn)方程為y﹣1=0,AB邊上的中線(xiàn)所在的直線(xiàn)方程為x﹣3y+4=0. (Ⅰ)求B,C點(diǎn)的坐標(biāo);
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某人在M汽車(chē)站的北偏西20°的方向上的A處,觀察到點(diǎn)C處有一輛汽車(chē)沿公路向M站行駛,公路的走向是M站的北偏東40°,開(kāi)始時(shí),汽車(chē)到A的距離為31千米,汽車(chē)前進(jìn)20千米后,到A的距離縮短了10千米.問(wèn)汽車(chē)還需行駛多遠(yuǎn),才能到達(dá)M汽車(chē)站?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}和{bn}(bn≠0,n∈N*),滿(mǎn)足a1=b1=1,anbn+1﹣an+1bn+bn+1bn=0
(1)令cn= ,證明數(shù)列{cn}是等差數(shù)列,并求{cn}的通項(xiàng)公式
(2)若bn=2n1 , 求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 的展開(kāi)式各項(xiàng)系數(shù)和為M, 的展開(kāi)式各項(xiàng)系數(shù)和為N,(x+1)n的展開(kāi)式各項(xiàng)的系數(shù)和為P,且M+N﹣P=2016,試求 的展開(kāi)式中:
(1)二項(xiàng)式系數(shù)最大的項(xiàng);
(2)系數(shù)的絕對(duì)值最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)過(guò)點(diǎn)( ,﹣ ),且離心率為 . (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)A(x1 , y1),B(x2 , y2)是橢圓C上的亮點(diǎn),且x1≠x2 , 點(diǎn)P(1,0),證明:△PAB不可能為等邊三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案