精英家教網 > 高中數學 > 題目詳情

【題目】已知函數).

(1)討論函數極值點的個數,并說明理由;

(2)若, 恒成立,求的最大整數值.

【答案】(1)當時, 上沒有極值點;當時, 上有一個極值點.

(2)3.

【解析】試題分析:

(1)首先對函數求導,然后分類討論可得當時, 上沒有極值點;當時, 上有一個極值點.

(2)結合題中所給的條件構造新函數),結合函數的性質可得實數的最大整數值為3.

試題解析:

(1)的定義域為,且.

時, 上恒成立,函數上單調遞減.

上沒有極值點;

時,令;

列表

所以當時, 取得極小值.

綜上,當時, 上沒有極值點;

時, 上有一個極值點.

(2)對, 恒成立等價于恒成立,

設函數),則),

令函數,則),

時, ,所以上是增函數,

, ,

所以存在,使得,即,

且當時, ,即,故在上單調遞減;

時, ,即,故上單調遞增;

所以當時, 有最小值,

,即

所以

所以,又,所以實數的最大整數值為3.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,設為曲線在點處的切線,其中.

(Ⅰ)求直線的方程(用表示);

(Ⅱ)求直線軸上的截距的取值范圍;

(Ⅲ)設直線分別與曲線和射線)交于, 兩點,求的最小值及此時的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為評估新教改對教學的影響,挑選了水平相當的兩個平行班進行對比試驗,甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時間后進行水平測試,成績結果全部落在區(qū)間內(滿分100分),并繪制頻率分布直方圖如圖所示,兩個班人數均為60人,成績80分及以上為優(yōu)良.

(1)根據以上信息填好聯表,并判斷出有多大的把握認為學生成績優(yōu)良與班級有關?

(2)以班級分層抽樣,抽取成績優(yōu)良的5人參加座談,現從5人中隨機選3人來作書面發(fā)言,求發(fā)言人至少有2人來自甲班的概率.

(以下臨界值及公式僅供參考)

, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了, , 四件獎品(每扇門里僅放一件).甲同學說:1號門里是,3號門里是;乙同學說:2號門里是,3號門里是;丙同學說:4號門里是,2號門里是;丁同學說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,直線的參數方程是為參數).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點,若直線與曲線交于, 兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為,甲投籃3次均未命中的概率為,甲、乙每次投籃是否命中相互之間沒有影響.

(1)若甲投籃3次,求至少命中2次的概率;

(2)若甲、乙各投籃2次,設兩人命中的總次數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為: (為參數),以原點為極點, 軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直角坐標系下曲線與曲線的方程;

(2)設為曲線上的動點,求點上點的距離的最大值,并求此時點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(Ⅰ)求函數的極值;

(Ⅱ)當時,若存在實數使得不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2015年12月,京津冀等地數城市指數“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數據如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點圖知具有線性相關關系,求關于的線性回歸方程;

的濃度;

(ii)規(guī)定:當一天內的濃度平均值在內,空氣質量等級為優(yōu);當一天內的濃度平均值在內,空氣質量等級為良,為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數)

參考公式:回歸直線的方程是,其中, .

查看答案和解析>>

同步練習冊答案