【題目】如圖所示,已知拋物線C:y2=4x的焦點為F,直線l經(jīng)過點F且與拋物線C相交于A、B兩點.
(1)若線段AB的中點在直線y=2上,求直線l的方程;
(2)若線段|AB|=20,求直線l的方程.
【答案】(1);(2)
【解析】試題分析:(1)設(shè)直線l的斜率為k,A(x1,y1),B(x2,y2),AB的中點M(x0,y0),由點差法,可得2y0k=4,又,所以。(2)設(shè)直線l的方程為x=my+1,與拋物線聯(lián)立組方程組,由弦長公式與志達定理,可求得參數(shù)m的值.
試題解析:(1)由已知得拋物線的焦點為F(1,0).因為線段AB的中點在直線y=2上,所以直線l的斜率存在,設(shè)直線l的斜率為k,A(x1,y1),B(x2,y2),AB的中點M(x0,y0),
則由得
(y1+y2)(y1-y2)=4(x1-x2),所以2y0k=4.
又y0=2,所以k=1,故直線l的方程是y=x-1.
(2)設(shè)直線l的方程為x=my+1,與拋物線方程聯(lián)立得消元得y2-4my-4=0,所以y1+y2=4m,y1y2=-4,Δ=16(m2+1)>0.
|AB|=|y1-y2|=·
=·=4(m2+1).
所以4(m2+1)=20,解得m=±2,
所以直線l的方程是x=±2y+1,
即x±2y-1=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列, 公比為 為數(shù)列{an}的前n項和.
(1)若求;
(2)若調(diào)換的順序后能構(gòu)成一個等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對任意正整數(shù)n,不等式總成立?若存在,求出的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α,β是兩個不同的平面,m,n分別是平面α與平面β之外的兩條不同直線,給出四個論斷:
①m⊥n;②α⊥β;③n⊥β;④m⊥α.
以其中三個論斷作為條件,余下一個論斷作為結(jié)論,寫出你認(rèn)為正確的一個命題:____.(用序號表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:曲線C:(m+2)x2+my2=1表示雙曲線,命題q:方程y2=(m2﹣1)x表示的曲線是焦點在x軸的負(fù)半軸上的拋物線,若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點.
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,點E,F(xiàn)分別為AB和PD中點。
(1)求直線AF與EC所成角的正弦值;
(2)求PE與平面PDB所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩名工人加工同一種零件,兩人每天加工的零件數(shù)相同,所得次品數(shù)分別為,,和的分布列如下表.
()分別求期望和.
()試對這兩名工人的技術(shù)水平進行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2x的定義域是[2,16].設(shè)g(x)=f(2x)﹣[f(x)]2.
(1)求函數(shù)g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com