15.解不等式
(1)(x-2)(a-x)>0            
(2)$\frac{x+2}{3-x}≥2$.

分析 (1)對(duì)a分類討論,求出其解集即可,
(2)不等式等價(jià)于$\left\{\begin{array}{l}{x+2≥2(3-x)}\\{3-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+2≤2(3-x)}\\{3-x<0}\end{array}\right.$,解得即可.

解答 解:(1)∵(x-2)(a-x)>0,可化為(x-2)(x-a)<0.
①當(dāng)a>2時(shí),上述不等式的解集為{x|2<x<a};
②當(dāng)a=2時(shí),上述不等式可化為(x-2)2<0,∴解集為∅,
③當(dāng)a<2時(shí),上述不等式的解集為{x|a<x<2}.
(2)$\frac{x+2}{3-x}≥2$等價(jià)于$\left\{\begin{array}{l}{x+2≥2(3-x)}\\{3-x>0}\end{array}\right.$或$\left\{\begin{array}{l}{x+2≤2(3-x)}\\{3-x<0}\end{array}\right.$,
解得$\frac{4}{3}$≤x<3,
故不等式的解集為{x|$\frac{4}{3}$≤x<3}.

點(diǎn)評(píng) 本題考查了一元二次不等式和分式不等式的解法,正確分類是關(guān)鍵,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}({1-x})+1,-1≤x<k\\{x^3}-3x+2,k≤x≤a\end{array}\right.$,若存在k使得函數(shù)f(x)的值域?yàn)閇0,2],則實(shí)數(shù)a的取值范圍是( 。
A.$({1,\sqrt{3}}]$B.(0,1]C.[0,1]D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{AB}=({0,2,1})$,$\overrightarrow{AC}=({-1,1,-2})$,則平面ABC的一個(gè)法向量可以是( 。
A.(3,-1,-2)B.(-4,2,2)C.(5,1,-2)D.(5,-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)全集U=R,已知$A=\left\{{x\left|{\frac{2x+3}{x-2}>0}\right.}\right\},B=\left\{{x\left|{|{x-1}|<2}\right.}\right\}$,則A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a>0且a≠1,設(shè)命題p:函數(shù)y=loga(x+1)在區(qū)間(-1,+∞)內(nèi)單調(diào)遞減;q:曲線y=x2+(2a-3)x+1與x軸有兩個(gè)不同的交點(diǎn).如果p或q為真命題,那么a的取值集合是怎樣的呢?并寫出求解過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x(x>0)}\\{1(x=0)}\\{-x-1(x<0)}\end{array}\right.$
(1)求f{f[f(-1)]}的值;
(2)畫出函數(shù)的圖象;
(3)指出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某市在“國(guó)際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛(ài)生命,遠(yuǎn)離毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性.禁毒志愿者為了了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡階段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進(jìn)行問(wèn)卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(Ⅰ)求隨機(jī)抽取的市民中年齡在[30,40)的人數(shù);
(Ⅱ)試根據(jù)頻率分布直方圖估計(jì)市民的平均年齡;
(Ⅲ)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)  抽取5人,再?gòu)牡玫降?人中抽到2人作為本次活動(dòng)的獲獎(jiǎng)?wù)撸沊為年齡在[50,60)年齡段的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.一個(gè)袋中裝有質(zhì)地均勻,大小相同的2個(gè)黑球和3個(gè)白球,從袋中一次任意摸出2個(gè)球,則恰有1個(gè)是白球的概率為$\frac{3}{5}$,從袋中一次任意摸出3個(gè)球,摸出白球個(gè)數(shù)的數(shù)學(xué)期望Eξ是1.8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.連續(xù)擲兩次骰子,以先后看到的點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo)(m,n),那么點(diǎn)P在圓x2+y2=17內(nèi)部(不包括邊界)的概率是$\frac{2}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案