16.已知x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0,求7a7+5a5+3a3+a1=-8.

分析 對(duì)x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0,兩邊求導(dǎo)可得:5x4(x+3)3+x5×3(x+3)2=8a8(x+1)7+7a7(x+1)6+…+a1,分別令x=0,x=-2,即可得出.

解答 解:對(duì)x5(x+3)3=a8(x+1)8+a7(x+1)7+…+a1(x+1)+a0,
兩邊求導(dǎo)可得:5x4(x+3)3+x5×3(x+3)2=8a8(x+1)7+7a7(x+1)6+…+a1
令x=0時(shí),可得:0=8a8+7a7+…+a1
令x=-2,可得:5×24×1-25×3×1=-8a8+7a7+…+a1,
∴7a7+5a5+3a3+a1=$\frac{1}{2}$×(-16)=-8.
故答案為:-8.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用、導(dǎo)數(shù)的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知△ABC的三邊AB、BC、AC所在的直線方程分別為3x-4y+7=0,2x+3y-1=0,5x-y-11=0
(1)求頂點(diǎn)A的坐標(biāo);
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)0<x<$\frac{π}{2}$,記a=sinx,b=x,c=lnsinx,試比較a,b,c的大小關(guān)系為( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若b>a>0,則下列不等式中一定成立的是(  )
A.$\frac{a+b}{2}$>b>$\sqrt{ab}$>aB.b>$\sqrt{ab}$>$\frac{a+b}{2}$>aC.b>a>$\frac{a+b}{2}$>$\sqrt{ab}$D.b>$\frac{a+b}{2}$>$\sqrt{ab}$>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在三棱錐P-ABC中,PA⊥平面ABC,△ABC是正三角形,D是BC的中點(diǎn),M、N分別為線段PB、PC上的點(diǎn),MN∥BC.
(1)求證:平面PAD⊥平面PBC;
(2)若PA=AD,當(dāng)點(diǎn)A到直線MN的距離最小時(shí),求三棱錐P-AMN與三棱錐P-ABC的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某校高一學(xué)生1000人,每周一同時(shí)在兩個(gè)可容納600人的會(huì)議室,開(kāi)設(shè)“音樂(lè)欣賞”與“美術(shù)鑒賞”的校本課程.要求每個(gè)學(xué)生都參加.要求第一次聽(tīng)“音樂(lè)欣賞”課的人數(shù)為m(400<m<600),其余的人聽(tīng)“美術(shù)鑒賞”課,從第二次起,學(xué)生可從兩個(gè)課中自由選擇,據(jù)以往經(jīng)驗(yàn),凡是這一次選擇“音樂(lè)欣賞”的學(xué)生,下一次會(huì)有20%改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會(huì)有30%改選“音樂(lè)欣賞”,用an,bn分別表示在第n次選“音樂(lè)欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).
(1)若m=500,分別求出第二次,第三次選“音樂(lè)欣賞”課的人數(shù)a2,a3;
(2)證明數(shù)列{an-600}是等比數(shù)列,并用n表示an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤a}\\{-2x,x>a}\end{array}\right.$無(wú)最大值,則實(shí)數(shù)a的取值范圍是(  )
A.(-1,+∞)B.(-∞,1)C.(0,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在正方體ABCD-A1B1C1D1中,O為正方形A1B1C1D1的中心,則異面直線A1D與OB所成角的余弦值為(  
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.直線y=x+1與直線x=1的夾角大小為$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案