【題目】數(shù)列{an}中,a1=1,an+an+1=( n , Sn=a1+4a2+42a3+…+4n1an , 類比課本中推導等比數(shù)列前項和公式的方法,可求得5Sn﹣4nan=

【答案】n
【解析】解:由Sn=a1+a24+a342+…+an4n1① 得4sn=4a1+a242+a343+…+an14n1+an4n
①+②得:5sn=a1+4(a1+a2)+42(a2+a3)+…+4n1(an1+an)+an4n
=a1+4× +422+…+4 n1n1+4nan
=1+1+1+…+1+4nan
=n+4nan
所以5sn﹣4nan=n,
所以答案是:n.
【考點精析】通過靈活運用類比推理,掌握根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質的推理,叫做類比推理即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a=x,b=2,B=45°,若此三角形有兩解,則x的取值范圍是(
A.x>2
B.x<2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD、ADEF為正方形,G,H是DF,F(xiàn)C的中點.
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點P(﹣3,﹣4)作直線l,當l的斜率為何值時
(1)l將圓(x﹣1)2+(y+2)2=4平分?
(2)l與圓(x﹣1)2+(y+2)2=4相切?
(3)l與圓(x﹣1)2+(y+2)2=4相交且所截得弦長=2?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且,記.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩條直線l1(3+m)x+4y=5﹣3m,l2 2x+(5+m)y=8.當m分別為何值時,l1與l2
(1)相交?
(2)平行?
(3)垂直?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知cosA= ,b=5c.
(1)求sinC;
(2)若△ABC的面積S= sinBsinC,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

ωx+φ

0

π

x

Asin(ωx+φ)

3

0


(1)請將上表空格中的數(shù)據(jù)在答卷的相應位置上,并求函數(shù)f(x)的解析式;
(2)若y=f(x)的圖象上所有點向左平移 個單位后對應的函數(shù)為g(x),求當x∈[﹣ , ]時,函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓ab>0的離心率,過點的直線與原點的距離為

1求橢圓的方程

2已知定點,若直線與橢圓交于CD兩點是否存在k的值,使以CD為直徑的圓過E點?請說明理由

查看答案和解析>>

同步練習冊答案