【題目】已知,是橢圓的左、右焦點(diǎn),橢圓過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)的直線(不過坐標(biāo)原點(diǎn))與橢圓交于,兩點(diǎn),且點(diǎn)軸上方,點(diǎn)軸下方,求直線的斜率.

【答案】(1)(2)

【解析】

(1) 由條件知從而解得,即可得到橢圓的方程;

(2)設(shè),,則,設(shè)直線的方程為,代入橢圓的方程消去,得,由韋達(dá)定理及可建立關(guān)于未知量的方程,解之即可.

(1)由條件知解得

因此橢圓的方程為.

(2)解法一設(shè),,則,,

設(shè)直線的方程為,

代入橢圓的方程消去,得,

由韋達(dá)定理得,,

,,

帶入上式得,

所以,解得

結(jié)合圖形知,故直線的斜率為.

解法二設(shè),則,

設(shè)直線的方程為,

代入橢圓的方程消去,得,

因此,,

代入上式得 ,

解得,

結(jié)合圖形知,故直線的斜率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個圓內(nèi)有6000個點(diǎn),其中任三點(diǎn)都不共線;①能否把這個圓分成2000塊,使每塊恰含有三個點(diǎn),如何分?②若每塊中三點(diǎn)滿足:兩兩間的距離皆為整數(shù)且不超過9,則以每塊中的三點(diǎn)為頂點(diǎn)作三角形,這些三角形中大小完全一樣的三角形至少有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種工業(yè)機(jī)器生產(chǎn)商,對一次性購買2臺機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:

方案一:交納延保金700元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)200元;

方案二:交納延保金1000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)100元.

某工廠準(zhǔn)備一次性購買2臺這種機(jī)器.現(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺數(shù)

5

20

10

15

以這50臺機(jī)器維修次數(shù)的頻率代替1臺機(jī)器維修次數(shù)發(fā)生的概率.記X表示這2臺機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù).

1)求X的分布列;

2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),工廠選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為SnnN*),等比數(shù)列{bn}的前n項(xiàng)和為TnnN*),已知a13,b11,a3+b210,S3T211

(Ⅰ)求數(shù)列{an}{bn}的通項(xiàng)公式:

(Ⅱ)若數(shù)列{cn}滿足c11,cn+1cnan,求c100;

(Ⅲ)設(shè)數(shù)列dnanbn,求{dn}的前n項(xiàng)和Kn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的中線與中位線相交于,已知旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是

A. 恒有

B. 異面直線不可能垂直

C. 恒有平面⊥平面

D. 動點(diǎn)在平面上的射影在線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費(fèi)情況,從該市使用其平臺且每周平均消費(fèi)額超過100元的人員中隨機(jī)抽取了100名,并繪制右圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.

(1)求的值;

(2)分析人員對抽取對象每周的消費(fèi)金額y與年齡x進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為22歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)在區(qū)間[1,2]上的最大值;

(2)設(shè)在(0,2)內(nèi)恰有兩個極值點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時,記的最小值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域D={x|x≠0},且滿足對于任意x1,x2D.f(x1·x2)=f(x1)+f(x2).

(1)f(1)的值;

(2)判斷f(x)的奇偶性并證明;

(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案