【題目】已知中心在坐標(biāo)原點,焦點在x軸上的橢圓,離心率為 且過點( ,0),過定點C(﹣1,0)的動直線與該橢圓相交于A、B兩點.
(1)若線段AB中點的橫坐標(biāo)是﹣ ,求直線AB的方程;
(2)在x軸上是否存在點M,使 為常數(shù)?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為: =1(a>b>0),
∴ ,a= ,a2=b2+c2,
解得a= ,c= ,b2= .
∴橢圓的方程為x2+3y2=5,
直線斜率不存在時顯然不成立,設(shè)直線AB:y=k(x+1),
將AB:y=k(x+1)代入橢圓的方程,消去y整理得(3k2+1)x2+6k2x+3k2﹣5=0,
設(shè)A(x1,y1),B(x2,y2),則 ,
∵線段AB的中點的橫坐標(biāo)為 ,解得 ,
∴直線AB的方程為
(2)
解:假設(shè)在x軸上存在點M(m,0),使得MAMB為常數(shù),
①當(dāng)直線AB與x軸不垂直時,由(1)知 ,
∴ =(x1﹣m)(x2﹣m)+y1y2=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2= ,
∵ 是與k無關(guān)的常數(shù),從而有 ,
此時 = .
②當(dāng)直線AB與x軸垂直時,此時結(jié)論成立,
綜上可知,在x軸上存在定點 ,使 ,為常數(shù)
【解析】(1)由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為: =1(a>b>0),可得 ,a= ,a2=b2+c2 , 解出可得橢圓的方程.直線斜率不存在時顯然不成立,設(shè)直線AB:y=k(x+1),將AB:=k(x+1)代入橢圓的方程,消去y整理得(3k2+1)x2+6k2x+3k2﹣5=0,由線段AB的中點的橫坐標(biāo)為 ,解得k,即可得出.(2)假設(shè)在x軸上存在點M(m,0),使得MAMB為常數(shù),
①當(dāng)直線AB與x軸不垂直時,利用根與系數(shù)的關(guān)系與數(shù)量積運算性質(zhì)可得 =(x1﹣m)(x2﹣m)+y1y2 , 即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點在原點,焦點在x軸上,且拋物線上有一點P(4,m)到焦點的距離為6.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若拋物線C與直線y=kx﹣2相交于不同的兩點A、B,且AB中點橫坐標(biāo)為2,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=2x+m與圓O:x2+y2=1相交于A,B兩個不同的點,且A(cosα,sinα),B(cosβ,sinβ).
(1)當(dāng)△AOB面積最大時,求m的取值,并求出|AB|的長度.
(2)判斷sin(α+β)是否為定值;若是,求出定值的大;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)已知數(shù)列(, )滿足, 其中, .
(1)當(dāng)時,求關(guān)于的表達式,并求的取值范圍;
(2)設(shè)集合.
①若, ,求證: ;
②是否存在實數(shù), ,使, , 都屬于?若存在,請求出實數(shù), ;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)如圖,四棱錐的底面ABCD 是平行四邊形,平面PBD⊥平面 ABCD, PB=PD,⊥,⊥,,分別是,的中點,連結(jié).求證:
(1)∥平面;
(2)⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間有如下的對應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為12萬元時,銷售收入y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足an+2SnSn﹣1=0(n≥2),a1= .
(1)求證:{ }是等差數(shù)列;
(2)求an的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中.
(1)是否存在實數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請說明理由;
(2)若是數(shù)列的前項和,求滿足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,D為AB的中點.
(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com