【題目】在平面直角坐標系中,直線l的方程為x+y+3=0,以直角坐標系中x軸的正半軸為極軸的極坐標系中,圓M的極坐標方程為ρ=2sinθ. (Ⅰ)寫出圓M的直角坐標方程及過點P(2,0)且平行于l的直線l1的參數(shù)方程;
(Ⅱ)設l1與圓M的兩個交點為A,B,求 的值.

【答案】解:(Ⅰ)極坐標方程ρ=2sinθ兩邊同乘ρ,得ρ2=2ρsinθ 其中ρ2=x2+y2 , y=ρsinθ,x=ρcosθ
所以⊙M的直角坐標方程為x2+y2﹣2y=0…①
又直線x+y+3=0的傾斜角為
所以過點P(2,0)且平行于x+y+3=0的直線的參數(shù)方程為
,(t為參數(shù))…②
直線的參數(shù)方程不唯一,只要正確給分
(Ⅱ)把(Ⅰ)中的②代入①整理得
設方程的兩根為t1 , t2 , 則有
由參數(shù)t 的幾何意義知PA+PB=t1+t2 , PA*PB=t1t2
所以
【解析】(Ⅰ)極坐標方程ρ=2sinθ兩邊同乘ρ,得ρ2=2ρsinθ,從而能求出⊙M的直角坐標方程,直線x+y+3=0的傾斜角為 ,由此能求出過點P(2,0)且平行于x+y+3=0的直線的參數(shù)方程.(Ⅱ)把直線的參數(shù)方程代入圓的直角坐標方程,得 ,由參數(shù)t 的幾何意義能求出 的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了了解一片經(jīng)濟林的生長情況,隨機抽測了其中60株樹木的底部周長(單位:cm),所得數(shù)據(jù)均在區(qū)間[80,130]上,其頻率分布直方圖如圖所示,則在抽測的60株樹木中,有株樹木的底部周長小于110cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+x2﹣xlna(a>0,a≠1).
(1)求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)單調(diào)增區(qū)間;
(3)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的是(
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w為常數(shù)且 <w<1),函數(shù)f(x)的圖象關于直線x=π對稱.
(I)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=1,f( A)= .求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,底面ABCD是邊長為 的正方形,AA1=3,E是AA1的中點,過C1作C1F⊥平面BDE與平面ABB1A1交于點F,則CF與平面ABCD所成角的正切值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p: ,命題q: ,則下列命題為真命題的是(
A.p∧q
B.(¬p)∧(﹣q)
C.p∧(¬q)
D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市隨機抽取部分企業(yè)調(diào)查年上繳稅收情況(單位:萬元),將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100]. (I)求直方圖中x的值;
(Ⅱ)如果年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,若共抽取企業(yè)1200個,試估計有多少企業(yè)可以申請政策優(yōu)惠;
(Ⅲ)從企業(yè)中任選4個,這4個企業(yè)年上繳稅收少于20萬元的個數(shù)記為X,求X的分布列和數(shù)學期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當φ變化時,求|AB|的最小值.

查看答案和解析>>

同步練習冊答案