已知函數(shù).
(1)求的最小正周期和最小值;
(2)若不等式對任意恒成立,求實數(shù)的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)的極值;
(2)若函數(shù)在定義域內為增函數(shù),求實數(shù)m的取值范圍;
(3)若,的三個頂點在函數(shù)的圖象上,且,、、分別為的內角A、B、C所對的邊。求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)=,=,若曲線和曲線都過點P(0,2),且在點P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若時,≤,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=+,g(x)=ln(2ex)(其中e為自然對數(shù)的底數(shù))
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函數(shù)h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)對一切x>0恒成立;若存在,求出一次函數(shù)的表達式,若不存在,說明理由:
3)數(shù)列{}中,a1=1,=g()(n≥2),求證:<<<1且<.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在上單調遞增,求實數(shù)的取值范圍.
(2)記函數(shù),若的最小值是,求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(且).
(1)設,令,試判斷函數(shù)在上的單調性并證明你的結論;
(2)若且的定義域和值域都是,求的最大值;
(3)若不等式對恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com