2.已知函數(shù)f(x)=9x-m3x+m+1,x∈(0,+∞)的圖象都在x軸的上方,則m的取值范圍是m<2+2$\sqrt{2}$.

分析 本題通過換元法將原函數(shù)轉(zhuǎn)化為二次函數(shù),然后結(jié)合二次函數(shù)的特點(diǎn)進(jìn)行分類解題.即△=(-m)2-4(m+1)<0或$\left\{\begin{array}{l}{△≥0}\\{\frac{m}{2}<1}\\{1-m+1+m>0}\end{array}\right.$,都滿足題意.

解答 解:令t=3x,則問題轉(zhuǎn)化為函數(shù)f(t)=t2-mt+m+1對(duì)t∈(1,+∞)的圖象恒在x軸的上方
即△=(-m)2-4(m+1)<0或$\left\{\begin{array}{l}{△≥0}\\{\frac{m}{2}<1}\\{1-m+1+m>0}\end{array}\right.$,
解得m<2+2$\sqrt{2}$.
故答案為m<2+2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的圖象與性質(zhì),二次函數(shù)的性質(zhì),還有通過換元法將原函數(shù)轉(zhuǎn)化為二次函數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點(diǎn)D為BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點(diǎn)E為A1C上的點(diǎn),且滿足A1E=mEC(m∈R),三棱錐E-ADC的體積與三棱柱ABC-A1B1C1的體積之比為1:12,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.?dāng)?shù)列{an}的通項(xiàng)公式${a_n}={({-1})^{n+1}}({2n-1})$,則它的前100項(xiàng)之和為100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等差數(shù)列{an}中,a2=2,a6=10,則a10=( 。
A.18B.16C.14D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為1,前n項(xiàng)和為Sn,且a1,a2,a4成等比數(shù)列,則$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{15}}}}$=$\frac{15}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.要得到函數(shù)$y=cos(\frac{x}{2}-\frac{π}{3})$的圖象,只需將函數(shù)$y=cos\frac{x}{2}$的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{2π}{3}$個(gè)單位D.向右平移$\frac{2π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)求導(dǎo)錯(cuò)誤的是(  )
A.($\sqrt{x}$)′=$\frac{1}{2\sqrt{x}}$B.($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$C.(lnx)′=$\frac{1}{x}$D.(e-x)′=e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.命題“不等式x2+x-6>0的解為x<-3或x>2”的逆否命題是若x≥-3且x≤2,則x2+x-6≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,將底面為矩形,一條側(cè)棱垂直于底面的四棱錐稱之為“陽馬”,已知某“塹堵”與某“陽馬”組合而成的幾何體的三視圖如圖所示,則該幾何體的體積( 。
A.$\frac{{5\sqrt{3}}}{6}$B.$\frac{{7\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{6}$D.$\frac{{3\sqrt{3}}}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案