【題目】已知函數(shù),且在區(qū)間上的最大值比最小值大.
(1)求的值;
(2)若函數(shù)在區(qū)間的最小值是,求實數(shù)的值.
【答案】(1);(2).
【解析】
(1)分和兩種情況討論,分析出函數(shù)在區(qū)間上的單調(diào)性,可得出該函數(shù)的最大值和最小值,再結(jié)合題中條件得出關(guān)于的方程,解出即可;
(2)設(shè),利用單調(diào)性的定義證明出函數(shù)在上為增函數(shù),可得出,可得出,并構(gòu)造函數(shù),對參數(shù)分類討論,分析函數(shù)在區(qū)間上的單調(diào)性,得出該函數(shù)的單調(diào)性,結(jié)合最小值為可求出實數(shù)的值.
(1)當時,函數(shù)在區(qū)間上單調(diào)遞增,
則該函數(shù)的最大值為,最小值為,
由題意得,解得,或(舍去);
當時,函數(shù)在區(qū)間上單調(diào)遞減,
則該函數(shù)的最大值為,最小值為,
由題意得,即,該方程無實數(shù)解.
綜上;
(2)函數(shù),
令,,任取,
因,
,所以,有,,所以.
則函數(shù)在上單調(diào)遞增,故.
令,因此,,所以問題轉(zhuǎn)化為:
函數(shù)在上有最小值,求實數(shù)的值.
因,對稱軸方程為,
當時,即當時,函數(shù)在上單調(diào)遞增,
故,由,解得與矛盾;
當時,即當時,,
由,解得或(舍去).
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若在區(qū)間上不單調(diào),求的取值范圍;
(2)設(shè),若函數(shù)在區(qū)間恒有意義,求實數(shù)的取值范圍;
(3)已知方程在有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線關(guān)于軸對稱,它的頂點在坐標原點,點、、均在拋物線上.
(1)寫出該拋物線的方程及其準線方程;
(2)當與的斜率存在且傾斜角互補時,求的值及直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①函數(shù)的一條對稱軸是;
②函數(shù)的圖象關(guān)于點(,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù)
④若,則,其中
以上四個命題中正確的有 (填寫正確命題前面的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在定義域內(nèi)恒有f(x)≤0,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:y2=8x,圓M:(x-2)2+y2=4,點N為拋物線E上的動點,O為坐標原點,線段ON的中點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)點Q(x0,y0)(x0≥5)是曲線C上的點,過點Q作圓M的兩條切線,分別與x軸交于A,B兩點,求△QAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為,對任意都有,且當時, .
(1)試判斷的單調(diào)性,并證明;
(2)若,
①求的值;
②求實數(shù)的取值范圍,使得方程有負實數(shù)根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com