1.函數(shù)f(x)=lnx+$\frac{1}{2}$x2+ax(a∈R),g(x)=ex+$\frac{3}{2}$x2
(1)討論f(x)的極值點(diǎn)的個(gè)數(shù);
(2)若對(duì)于?x>0,總有f(x)≤g(x),求實(shí)數(shù)a的范圍.

分析 (1)法一:求f(x)的導(dǎo)數(shù)f′(x),利用判別式△=a2-4,判斷f′(x)是否大于0,從而得出f(x)的單調(diào)性與極值點(diǎn)情況;
法二:求f(x)的導(dǎo)數(shù)f′(x),根據(jù)x>0求出f'(x)的值域,討論a的值得出f′(x)的正負(fù)情況,判斷f(x)的單調(diào)性和極值點(diǎn)問題;
(2)f(x)≤g(x)等價(jià)于ex-lnx+x2≥ax,由x>0,利用分離常數(shù)法求出a的表達(dá)式,再構(gòu)造函數(shù)求最值即可證明.

解答 解:(1)法一:由題意得f′(x)=x+$\frac{1}{x}$+a=$\frac{{x}^{2}+ax+1}{x}$(x>0),令△=a2-4,
(i)當(dāng)△=a2-4≤0,即-2≤a≤2時(shí),x2+ax+1≥0對(duì)x>0恒成立;
即f′(x)=$\frac{{x}^{2}+ax+1}{x}$≥0對(duì)x>0恒成立,
此時(shí)θ(x)=lnx+$\frac{e}{x}$沒有極值點(diǎn);
(ii)當(dāng)△=a2-4>0,即a<-2或a>2,
①a<-2時(shí),設(shè)方程x2+ax+1=0兩個(gè)不同實(shí)根為x1,x2,不妨設(shè)x1<x2,
則x1+x2=-a>0,x1x2=1>0,故x2>x1>0,
∴x<x1或x>x2時(shí)f(x)>0;
在x1<x<x2時(shí)f(x)<0,
故x1,x2是函數(shù)f(x)的兩個(gè)極值點(diǎn);
②a>2時(shí),設(shè)方程x2+ax+1=0兩個(gè)不同實(shí)根為x1,x2,
則x1+x2=-a<0,x1x2=1>0,故x2<0,x1<0,
∴x>0時(shí),f(x)>0;
故函數(shù)f(x)沒有極值點(diǎn);
綜上,當(dāng)a<-2時(shí),函數(shù)f(x)有兩個(gè)極值點(diǎn);
當(dāng)a≥-2時(shí),函數(shù)f(x)沒有極值點(diǎn);
法二:由題意得f′(x)=x+$\frac{1}{x}$+a,
∵x>0,∴f'(x)∈[a+2,+∞),
①當(dāng)a+2≥0,即a∈[-2,+∞)時(shí),f′(x)≥0對(duì)?x>0恒成立,
∴f(x)在(0,+∞)上單調(diào)遞增,f(x)沒有極值點(diǎn);   
②當(dāng)a+2<0,即a∈(-∞,-2)時(shí),方程x2+ax+1=0有兩個(gè)不等正數(shù)解x1,x2,
f′(x)=x+$\frac{1}{x}$+a=$\frac{{x}^{2}+ax+1}{x}$=$\frac{(x{-x}_{1})(x{-x}_{2})}{x}$(x>0)
不妨設(shè)0<x1<x2,則當(dāng)x∈(0,x1)時(shí),f'(x)>0,f(x)單調(diào)遞增;
x∈(x1,x2)時(shí),f'(x)<0,f(x)單調(diào)遞減;
x∈(x2,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增,
所以x1,x2分別為f(x)極大值點(diǎn)和極小值點(diǎn),f(x)有兩個(gè)極值點(diǎn).
綜上所述,當(dāng)a∈[-2,+∞)時(shí),f(x)沒有極值點(diǎn);
當(dāng)a∈(-∞,-2)時(shí),f(x)有兩個(gè)極值點(diǎn);
(2)( i)f(x)≤g(x)等價(jià)于ex-lnx+x2≥ax,
由x>0,即a≤$\frac{{e}^{x}{+x}^{2}-lnx}{x}$對(duì)于?x>0恒成立,
設(shè)φ(x)=$\frac{{e}^{x}{+x}^{2}-lnx}{x}$(x>0),
φ′(x)=$\frac{{e}^{x}(x-1)+lnx+(x+1)(x-1)}{{x}^{2}}$,
∵x>0,∴x∈(0,1)時(shí),φ'(x)<0,φ(x)單調(diào)遞減,
x∈(1,+∞)時(shí),φ'(x)>0,φ(x)單調(diào)遞增,
∴φ(x)≥φ(1)=e+1,∴a≤e+1.

點(diǎn)評(píng) 本題考查了函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用問題,也考查了求函數(shù)最值與不等式恒成立問題,是綜合性問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$sinα=\frac{4}{5},α∈({\frac{π}{2},π}),cosβ=-\frac{5}{13},β是第三象限角$.
(1)求sin(α-β)的值
(2)求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知α是第二象限角,sin α=$\frac{5}{13}$,則tan α=( 。
A.-$\frac{5}{12}$B.$\frac{5}{12}$C.-$\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.比大。$tan(-\frac{13π}{7})$>$tan(-\frac{15π}{8})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知角α的頂點(diǎn)在原點(diǎn),始邊為x軸的非負(fù)半軸,若角α的終邊過點(diǎn)$P(x,-\sqrt{2})$,且$cosα=\frac{{\sqrt{3}}}{6}x$(x≠0),判斷角α所在的象限,并求sinα和tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),對(duì)于任意實(shí)數(shù)k,下列直線被橢圓所截弦長(zhǎng)與直線y=kx+1被截得的弦長(zhǎng)不可能相等是( 。
A.kx+y+k=0B.kx-y-1=0C.kx+y-k=0D.kx+y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下面四個(gè)推理中,屬于演繹推理的是( 。
A.觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數(shù)字為43
B.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù)
C.在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積之比為1:8
D.已知堿金屬都能與水發(fā)生還原反應(yīng),鈉為堿金屬,所以鈉能與水發(fā)生反應(yīng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,AB=4,AC=3,$\overrightarrow{AC}$•$\overrightarrow{BC}$=1,則BC=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)A的直線L交C于另一點(diǎn)B,交x軸的正半軸于點(diǎn)D,且有|FA|=|FD|,當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形.
(1)求C的方程
(2)若直線L1平行L,且L1和C有且只有一個(gè)公共點(diǎn)E,證明直線AE恒過定點(diǎn)?求△ABE的面積最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案