5.已知sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,則sin(2α-$\frac{π}{6}$)的值為( 。
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.±$\frac{2\sqrt{2}}{3}$D.-$\frac{2}{3}$

分析 由二倍角的余弦公式可得cos(2α+$\frac{π}{3}$),再由sin(2α-$\frac{π}{6}$)=sin(2α-$\frac{π}{2}$+$\frac{π}{3}$),運(yùn)用誘導(dǎo)公式即可得到所求值.

解答 解:由sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,
可得cos(2α+$\frac{π}{3}$)=1-2sin2(α+$\frac{π}{6}$)
=1-2×$\frac{1}{9}$=$\frac{7}{9}$,
則sin(2α-$\frac{π}{6}$)=sin(2α-$\frac{π}{2}$+$\frac{π}{3}$)
=-cos(2α+$\frac{π}{3}$)=-$\frac{7}{9}$.
故選:B.

點(diǎn)評(píng) 本題考查二倍角的余弦公式和誘導(dǎo)公式的運(yùn)用,注意轉(zhuǎn)化思想的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=x3-ax+1在點(diǎn)(1,f(1))處的切線與直線x+4y=0垂直,則實(shí)數(shù)a等于( 。
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對(duì)于不等式1+$\sqrt{6}$<$\sqrt{3}$+2,$\sqrt{2}$$+\sqrt{7}$<2+$\sqrt{5}$,$\sqrt{3}$+2$\sqrt{2}$<$\sqrt{5}$+$\sqrt{6}$,它們都是正確的.
(Ⅰ) 根據(jù)上面不等式的規(guī)律,猜想$\sqrt{n}$+$\sqrt{n+5}$與$\sqrt{n+2}$+$\sqrt{n+3}$(n∈N+)的大小并加以證明:
(Ⅱ) 若不等式$\sqrt{n+a}$+$\sqrt{n+b}$<$\sqrt{n+c}$+$\sqrt{n+d}$(n∈N*)成立,請(qǐng)你寫出a,b,c,d所滿足的一個(gè)等式和一個(gè)不等式,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷得到如下數(shù)據(jù)
 單價(jià)x(元) 8 8.2 8.4 8.6 8.8 9
 銷量y(件) 90 84 83 80 75 68
由表中數(shù)據(jù),求得線性回歸直線方程$\stackrel{∧}{y}$=-20x+$\stackrel{∧}{a}$,若在這樣本點(diǎn)中任取一點(diǎn),則它在回歸直線左下方的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.集合A={x|3<x<5},集合B={x|a-1≤x≤a+2},A⊆B,求a的數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c,2sinCsinB=sinB-sin(A-C).
(I)判斷△ABC的形狀;
(Ⅱ)當(dāng)B為鈍角時(shí),求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,是某組合體的三視圖,則外部幾何體的表面積為( 。
A.B.12πC.24πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知三棱錐P-ABC的體積為$\frac{8}{3},PA⊥$底面ABC,且△ABC的面積為4,三邊AB,BC,CA的乘積為16,則三棱錐P-ABC的外接球的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)圓x2+y2+2$\sqrt{3}$x-13=0的圓心為A,直線l過點(diǎn)B($\sqrt{3}$,0)且與x軸不重合,l交圓A于C,D兩點(diǎn)過B作AC的平行線交AD于點(diǎn)E
(Ⅰ)證明:|EA|+|EB|為定值,并寫出點(diǎn)E的軌跡方程
(Ⅱ)設(shè)過點(diǎn)M(0,2)的直線t與點(diǎn)E的軌跡交于y軸右側(cè)不同的兩點(diǎn)P,Q,若O在以PQ為直徑的圓上,求直線t的斜率k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案