14.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關(guān)于x的方程f(x)=k有3個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍.

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(Ⅱ)問題轉(zhuǎn)化為y=f(x)和y=k有3個(gè)交點(diǎn),根據(jù)f(x)的極大值和極小值求出k的范圍即可.

解答 解:(I)∵f(x)=x3-3x,∴f′(x)=3(x-1)(x+1),
令f′(x)=0,解得x=-1或x=1,列表如下:

x(-∞,-1)-1(-1,1)1(1,+∞)
f′(x)+0-0+
f(x)極大值極小值
當(dāng)x=-1時(shí),有極大值f(-1)=2;
當(dāng)x=1時(shí),有極小值f(1)=-2.
(II)要f(x)=k有3個(gè)實(shí)根,
由(I)知:f(1)<k<f(-1),
即-2<k<2,
∴k的取值范圍是(-2,2).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,BC=2AD=4.AB=2BC=2CD=2$\sqrt{5}$,M為棱PC上一點(diǎn).
(1)求證:平面BDM⊥平面PAD;
(2)當(dāng)三棱錐P-ABD的體積是三棱錐M-PBD體積的3倍時(shí),求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果執(zhí)行下面的程序框圖,那么輸出的S=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C的對(duì)稱中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F,F(xiàn),左右頂點(diǎn)分別為A,B,且|F1F2|=4,|AB|=4$\sqrt{2}$
(1)求橢圓的方程;
(2)過F1的直線l與橢圓C相交于M,N兩點(diǎn),若△MF2N的面積為$\frac{16}{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=x3+x2+mx+1是R上的單調(diào)增函數(shù),則實(shí)數(shù)m的取值范圍是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合P={x|x2-x-2≥0},Q={x|$\frac{x-1}{x-3}$|<0},則P∩Q={x|2≤x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了解某地房?jī)r(jià)環(huán)比(所謂環(huán)比,簡(jiǎn)單說就是與相連的上一期相比)漲幅情況,如表記錄了某年1月到5月的月份x(單位:月)與當(dāng)月上漲的百比率y之間的關(guān)系:
時(shí)間x12345
上漲率y0.10.20.30.30.1
(1)根據(jù)如表提供的數(shù)據(jù),求y關(guān)于x的線性回歸方程y=$\widehat$x+$\widehat{a}$;
(2)預(yù)測(cè)該地6月份上漲的百分率是多少?
(參考公式:用最小二乘法求線性回歸方程系數(shù)公式$\widehat$=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x、y滿足約束條件$\left\{\begin{array}{l}{x+2y≤1}\\{2x+y≥-1}\\{x-y≤0}\end{array}\right.$,則z=3x-2y的最小值為( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于實(shí)軸對(duì)稱,z1=2+i,則$\frac{z_1}{z_2}$=$\frac{3}{5}$+$\frac{4}{5}$i.

查看答案和解析>>

同步練習(xí)冊(cè)答案