已知正方體ABCD-A1B1C1D1中,E為棱CC1的動點.
(1)當E恰為棱CC1的中點時,試證明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一個點E,可以使二面角A1-BD-E的大小為45°?如果存在,試確定點E在棱CC1上的位置;如果不存在,請說明理由.
分析:(1)連接AC,BD,設AC∩BD=O,連接A1O,OE,在等邊△A1BD中,BD⊥A1O,由BD⊥A1E,A1O?平面A1OE,A1O∩A1E=A1,知∠A1OE是二面角A1-BD-E的平面角,由此能夠證明平面A1BD⊥平面EBD.
(2)在正方體ABCD-A1B1C1D1中,假設棱CC1上存在點E,可以使二面角A1-BD-E的大小為45°,由∠A1OE=45°設正方體ABCD-A1B1C1D1的棱長為2a,EC=x,由平面幾何知識,得EO=
2a2+x2
A1O=
6
a
,A1E=
8a2+(2a-x)2
,由此能推導出棱OC1上不存在滿足條件的點.
解答:(1)證明:連接AC,BD,設AC∩BD=O,連接A1O,OE,
在等邊△A1BD中,BD⊥A1O,
∵BD⊥A1E,A1O?平面A1OE,A1O∩A1E=A1,
∴BD⊥平面A1OE,
于是BD⊥OE,
∴∠A1OE是二面角A1-BD-E的平面角,
在正方體ABCD-A1B1C1D1中,設棱長為2a,
∵E是棱CC1的中點,
∴由平面幾何知識,得EO=
3
a
,A1O=
6
a
,A1E=3a,
滿足A1E2=A1O2+EO2,
∴∠A1OE=90°,即平面A1BD⊥平面EBD.
(2)解:在正方體ABCD-A1B1C1D1中,
假設棱CC1上存在點E,可以使二面角A1-BD-E的大小為45°,
由(1)知,∠A1OE=45°,
設正方體ABCD-A1B1C1D1的棱長為2a,EC=x,
由平面幾何知識,得EO=
2a2+x2
,A1O=
6
a
A1E=
8a2+(2a-x)2
,
∴在△A1OE中,由A1E2=A1O2+EO2-2A1O•EO•cos∠A1OE,
得x2-8ax-2a2=0,
解得x=4a±3
2
a
,
4a+3
2
a>2a,4a-3
2
a<0

∴棱OC1上不存在滿足條件的點.
點評:本題考查平面與平面垂直的證明,考查棱CC1上是否存在一個點E,可以使二面角A1-BD-E的大小為45°.考查運算求解能力,推理論證能力;考查化歸與轉化思想.綜合性強,難度大,有一定的探索性,對數(shù)學思維能力要求較高,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P在平面DD1C1C內,PD1=PC1=
2
.求證:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為BB1、CC1的中點,那么直線AE與D1F所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1,則四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是
3
6
3
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
(1)求證:C1O∥面AB1D1
(2)求異面直線AD1與 C1O所成角的大。

查看答案和解析>>

同步練習冊答案