2.已知命題p:?x∈R,sinx=$\frac{3}{2}$;命題q:?x∈R,x2-4x+5>0,則下列結(jié)論正確的是( 。
A.命題p∧q是真命題B.命題p∧¬q是真命題
C.命題¬p∧q是真命題D.命題¬p∨¬q是假命題

分析 根據(jù)復(fù)合命題真假關(guān)系進(jìn)行判斷即可.

解答 解:由題意得,因?yàn)?1≤sinx≤1,所以命題p是假命題,所以¬p為真命題;
又因?yàn)閤2-4x+5=(x-2)2+1>0恒成立,
所以命題q為真命題,
所以命題¬p∧q是真命題,
故選C.

點(diǎn)評 本題主要考查復(fù)合命題真假關(guān)系的應(yīng)用,根據(jù)條件先判斷命題p,q的真假是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=(x2+ax+a)e-x(a<2,a∈R).
(1)討論f(x)的單調(diào)性,并求出極值;
(2)是否存在實(shí)數(shù)a,使f(x)的極大值為3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)f(x)=ex-kx2+(k-e)x有三個不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(e,+∞)B.(0,e)C.[1,e)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.將四位八進(jìn)制數(shù)1000(8)轉(zhuǎn)化為六進(jìn)制為( 。
A.2120(6)B.3120(6)C.2212(6)D.4212(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若非零向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$滿足$\overrightarrow a$+2$\overrightarrow b$+3$\overrightarrow c$=$\overrightarrow 0$,且$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c$=$\overrightarrow c$•$\overrightarrow a$,則$\overrightarrow b$與$\overrightarrow c$的夾角為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),過E點(diǎn)作EF⊥PB交PB于點(diǎn)F.求證:
(1)PA∥平面EDB;
(2)PB⊥平面EFD.
(3)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.隨機(jī)變量ξ的分布列如表,其中a,b,c成等差數(shù)列.若E(ξ)=$\frac{5}{3}$,則D(ξ)=( 。
ξ123
Pabc
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知|$\overrightarrow{OA}$|=3,$\overrightarrow{OA}$•$\overrightarrow{OB}$=17,則$\overrightarrow{OA}$•$\overrightarrow{AB}$=( 。
A.0B.14C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,圓C:x2+(y-1)2=1與y軸的上交點(diǎn)為A,動點(diǎn)P從A點(diǎn)出發(fā)沿圓C按逆時針方向運(yùn)動,設(shè)旋轉(zhuǎn)的角度∠ACP=x(0≤x≤2π),向量$\overrightarrow{OP}$在$\overrightarrow a$=(0,1)方向的射影為y(O為坐標(biāo)原點(diǎn)),則y關(guān)于x的函數(shù)y=f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案