7.某學(xué)生記憶導(dǎo)數(shù)公式如下,其中錯(cuò)誤的一個(gè)是( 。
A.(${\frac{1}{x}}$)′=-$\frac{1}{x^2}$B.(ax)=axlnaC.(lnx)′=$\frac{1}{x}$D.(sinx)′=-cosx

分析 根據(jù)常用導(dǎo)數(shù)的基本公式即可到答案.

解答 解:根據(jù)導(dǎo)數(shù)的基本公式,可知(sinx)′=cosx,故D錯(cuò)誤,
故選:D.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的基本公式,需要熟練掌握,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為y=256+2x,表明(  )
A.廢品率每增加1%,生鐵成本增加258元
B.廢品率每增加1%,生鐵成本增加2元
C.廢品率每增加1%,生鐵成本每噸增加2元
D.廢品率不變,生鐵成本為256元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,動(dòng)點(diǎn)P從邊長為1的正方形ABCD的頂點(diǎn)A出發(fā),順次經(jīng)過B、C、D再回到A.用x表示P點(diǎn)經(jīng)過的路程,y表示AP的長,則當(dāng)1<x<2時(shí),$\frac{y^2}{x}$的最小值為( 。
A.2$\sqrt{2}$B.3$\sqrt{2}$C.2$\sqrt{2}$-2D.3$\sqrt{2}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.工人月工資(元)依勞動(dòng)生產(chǎn)率(千元)變化的回歸直線方程為$\stackrel{^}{y}$=60+90x,下列說法中正確的個(gè)數(shù)是( 。
(1)勞動(dòng)生產(chǎn)率為1000元時(shí),工資約為150元
(2)勞動(dòng)生產(chǎn)率提高1000元時(shí),工資提高90元
(3)勞動(dòng)生產(chǎn)率提高1000元時(shí),工資提高150元
(4)當(dāng)月工資為240元時(shí),勞動(dòng)生產(chǎn)率約為2000元.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)P為圓C:x2+y2=4上的動(dòng)點(diǎn),A(4,0),則線段AP中點(diǎn)M的軌跡方程為( 。
A.(x-2)2+y2=1B.(x+2)2+y2=1C.(x-2)2+y2=4D.x2+(y-2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋擲一枚均勻的硬幣4次,則恰有2次正面向上的概率( 。
A.$\frac{1}{2}$B.$\frac{1}{16}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-2x.
(1)求函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時(shí),ex>x2;
(3)當(dāng)x>0時(shí),方程f(x)=kx2-2x無解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,在三棱錐O-ABC中,點(diǎn)D是棱AC的中點(diǎn),若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{BD}$等于(  )
A.-$\overrightarrow{a}+\overrightarrow-\overrightarrow{c}$B.$\overrightarrow{a}-\overrightarrow+\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$+$\frac{1}{2}$$\overrightarrow{c}$D.-$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z滿足z(1-i)=2,則z=( 。
A.1-iB.1+iC.2-2iD.2+2i

查看答案和解析>>

同步練習(xí)冊(cè)答案