15.工人月工資(元)依勞動(dòng)生產(chǎn)率(千元)變化的回歸直線方程為$\stackrel{^}{y}$=60+90x,下列說法中正確的個(gè)數(shù)是( 。
(1)勞動(dòng)生產(chǎn)率為1000元時(shí),工資約為150元
(2)勞動(dòng)生產(chǎn)率提高1000元時(shí),工資提高90元
(3)勞動(dòng)生產(chǎn)率提高1000元時(shí),工資提高150元
(4)當(dāng)月工資為240元時(shí),勞動(dòng)生產(chǎn)率約為2000元.
A.1B.2C.3D.4

分析 根據(jù)所給的線性回歸方程,當(dāng)x增加1時(shí),y要增加90元,當(dāng)勞動(dòng)效率增加1000元時(shí),工資提高90元,這里的值是平均增加90元.

解答 解:∵回歸直線方程為$\stackrel{^}{y}$=60+90x,
∴當(dāng)x增加1時(shí),y要增加90元,
∴當(dāng)勞動(dòng)效率增加1000元時(shí),工資提高90元,
故選:A.

點(diǎn)評 本題考查線性回歸方程的應(yīng)用,解題的關(guān)鍵是看清題目中自變量的值每增加1個(gè)單位,y的值就平均增加90,注意平均一詞.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,依此規(guī)律,若$\sqrt{9+\frac{9}{m}}$=$9\sqrt{\frac{9}{m}}$,則m的值為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α∈($\frac{π}{2}$,π),β∈(-$\frac{π}{2}$,0),且sinα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{\sqrt{10}}{10}$,則α-β的值為$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一條河的兩岸平行,河水的流速為2m/s,一艘小船以10m/s的速度向垂直于對岸的方向行駛,求小船在靜水中的速度大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=$\frac{lnx}{x^2}$.
(1)求f(x)的極大值;
(2)當(dāng)方程f(x)-$\frac{a}{2e}$=0(a∈R+)有唯一解時(shí),方程g(x)=txf'(x)+$\frac{{a{x^2}-2tx-t}}{x^2}$=0也有唯一解,求正實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若長方體的一個(gè)頂點(diǎn)上三條棱長分別是1、1、2,且它的八個(gè)頂點(diǎn)都在同一球面上,則這個(gè)球的表面積是(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某學(xué)生記憶導(dǎo)數(shù)公式如下,其中錯(cuò)誤的一個(gè)是( 。
A.(${\frac{1}{x}}$)′=-$\frac{1}{x^2}$B.(ax)=axlnaC.(lnx)′=$\frac{1}{x}$D.(sinx)′=-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=x2-(4a+1)x+3a2+3a的圖象與x軸交于A、B兩點(diǎn),若兩點(diǎn)間的距離等于2,則a的值為( 。
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$或-$\frac{1}{2}$D.$\frac{3}{2}$或-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=xlnx+\frac{3}{2}$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(II)若對定義域內(nèi)任意的x,$f(x)≥\frac{{-{x^2}+mx}}{2}$恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案