已知12sinα-5cosα=13,則tanα=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:利用輔助角公式將函數(shù)進(jìn)行化簡(jiǎn),得到α=θ+
π
2
+2kπ,利用三角函數(shù)的誘導(dǎo)公式進(jìn)行化簡(jiǎn)求值即可.
解答: 解:由12sinα-5cosα=13,
得13(
12
13
sinα-
5
13
cosα)=13,
12
13
sinα-
5
13
cosα=1,
設(shè)cosθ=
12
13
,則sinθ=
5
13
,則tanθ=
sinθ
cosθ
=
5
12
,
則方程等價(jià)為sin(α-θ)=1,
則α-θ=
π
2
+2kπ,
即α=θ+
π
2
+2kπ,
則tanα=tan(θ+
π
2
+2kπ)=tan(θ+
π
2
)=
sin(θ+
π
2
)
cos(θ+
π
2
)
=
cosθ
-sinθ
=-
1
tanθ
=-
12
5
,
故答案為:-
12
5
點(diǎn)評(píng):本題主要考查三角函數(shù)求值,利用輔助角公式結(jié)合三角函數(shù)的誘導(dǎo)公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx).
(1)求f(x)的最小正周期;
(2)求不等式f(x)≥2在區(qū)間[-
π
2
,
π
2
]的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若60<x<84,28<y<33,則x-y的取值范圍是
 
x
y
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知b為如圖所示的程序框圖輸出的結(jié)果,則二項(xiàng)式(
bx
-
1
x
6的展開式中的常數(shù)項(xiàng)式( 。
A、-20B、-540
C、20D、540

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市環(huán)保所對(duì)市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,得出一天中環(huán)境綜合污染指數(shù)f(x)與時(shí)間(小時(shí))的關(guān)系為f(x)=|
1
2
sin(
π
32
x
)+
1
3
-a|+2a,x∈[0,24],其中a為氣象有關(guān)的參數(shù),且a∈[0,1],若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),并記作M(a).
(Ⅰ)令t=
1
2
sin(
π
32
x
),x∈[0,24],求t的取值范圍;并求函數(shù)M(a)關(guān)于a的解析式;
(Ⅱ)為加強(qiáng)對(duì)環(huán)境污染的整治,市政府規(guī)定每天的綜合污染指數(shù)不得超過2,試問目前市中心的綜合污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,4),B(2,5),C(-2,1),求證:A,B,C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)(a,25)在函數(shù)y=5x的圖象上,則tan
6
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x-y+5≥0
y≥kx+5
0≤x≤2
,表示的平面區(qū)域是一個(gè)銳角三角形,則實(shí)數(shù)k的取值范圍是( 。
A、(-∞,-1)
B、(0,1)
C、(1,+∞)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1+i
2+i
(其中i是虛數(shù)單位),則復(fù)數(shù)z在坐標(biāo)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案