9.已知定義在R上的函數(shù)f(x)滿足f(-3)=f(5)=1,f'(x)為f(x)的導(dǎo)函數(shù),且導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.則不等式f(x)<1的解集是(  
A.(-3,0)B.(-3,5)C.(0,5)D.(-∞,-3)∪(5,+∞)

分析 由圖象可以判斷出f(x)的單調(diào)性情況,由f(-3)與f(5)的取值,即可得出答案.

解答 解:由f′(x)的圖象可得,f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,
又由題意可得,f(-3)=f(5)=1,
∴f(x)<1的解集是(-3,5),
故選:B.

點(diǎn)評(píng) 本題考查導(dǎo)函數(shù)圖象與函數(shù)單調(diào)性的關(guān)系,考查學(xué)生靈活轉(zhuǎn)化題目條件的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若a>b>0且a3-b3=a2-b2,則a+b的取值范圍是( 。
A.(0,+∞)B.(1,+∞)C.(1,2)D.$({1,\frac{4}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x${\;}^{-{k}^{2}+k+2}$(k∈Z)且f(2)<f(3)
(1)求實(shí)數(shù)k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-pf(x)+(2p-1)x在區(qū)間[-1,2]上的值域?yàn)閇-4,$\frac{17}{8}$],若存在,求出這個(gè)p的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.對(duì)于函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)探索函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實(shí)數(shù)a,使函數(shù)f(x)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知0≤x≤1,0≤y≤1,則滿足y≤2x所有解的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.用二分法求方程的近似根,精確度為δ,用直到型循環(huán)結(jié)構(gòu)的終止條件是(  )
A.|x1-x2|>δB.|x1-x2|<δC.x1<δ<x2D.x1=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.定義在R上的函數(shù)f(x)滿足f(x)=-f(x+2),且當(dāng)x∈(-1,1]時(shí),f(x)=x2+2x.
(1)求當(dāng)x∈(3,5]時(shí),f(x)的解析式;
(2)判斷f(x)在(3,5]上的增減性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.一個(gè)正方體的平面展開(kāi)圖及該正方體的直觀圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N.
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需要說(shuō)明理由);
(2)求證:直線MN∥平面BDH;
(3)求二面角B-DH-C的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,設(shè)四棱柱的外接球的球心為O,動(dòng)點(diǎn)P在正方形ABCD的邊長(zhǎng),射線OP交球O的表面點(diǎn)M,現(xiàn)點(diǎn)P從點(diǎn)A出發(fā),沿著A→B→C→D→A運(yùn)動(dòng)一次,則點(diǎn)M經(jīng)過(guò)的路徑長(zhǎng)為$\frac{4\sqrt{2}}{3}π$.

查看答案和解析>>

同步練習(xí)冊(cè)答案