18.一個(gè)正方體的平面展開圖及該正方體的直觀圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N.
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需要說明理由);
(2)求證:直線MN∥平面BDH;
(3)求二面角B-DH-C的平面角的大。

分析 (1)作出該正方體,從而能得到字母F,G,H的位置.
(2)連結(jié)BD,設(shè)O為BD中點(diǎn),推導(dǎo)出四邊形OMNH為平行四邊形,從而MN∥OH,由此能證明MN∥平面BDH.
(3)由HD⊥平面ABCD,得HD⊥DB,且HD⊥DC,從而∠BDC為二面角B-DH-C的平面角,由此能求出二面角B-DH-C的平面角.

解答 解:(1)由一個(gè)正方體的平面展開圖及該正方體的直觀圖
作出該正方體,得到字母F,G,H的位置如圖所示.
證明:(2)連結(jié)BD,設(shè)O為BD中點(diǎn),∵BM=MC,BO=OD,
∴OM$\underset{∥}{=}$$\frac{1}{2}CD$,又HN$\underset{∥}{=}$$\frac{1}{2}CD$,
∴OM$\underset{∥}{=}$HN,
∴四邊形OMNH為平行四邊形,∴MN∥OH,
又∵M(jìn)N?平面BDH,OH?平面BDH,
∴MN∥平面BDH.
解:(3)∵HD⊥平面ABCD,∴HD⊥DB,且HD⊥DC,
∴∠BDC為二面角B-DH-C的平面角,
在等腰直角三角形BCD中,∠BDC=45°,
∴二面角B-DH-C的平面角為45°.

點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的平面角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,再向上平移1個(gè)單位后得到的函數(shù)圖象對(duì)應(yīng)的表達(dá)式為y=2sin2x,則函數(shù)f(x)的表達(dá)式可以是( 。
A.f(x)=2sinxB.f(x)=2cosxC.f(x)=cos2xD.f(x)=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的函數(shù)f(x)滿足f(-3)=f(5)=1,f'(x)為f(x)的導(dǎo)函數(shù),且導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.則不等式f(x)<1的解集是(  
A.(-3,0)B.(-3,5)C.(0,5)D.(-∞,-3)∪(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題 p:|x+2|>1,命題 q:x<a,且¬q 是¬p 的必要不充分條件,則 a 的取值范圍可以是( 。
A.a≥3B.a≤-3C.a<-3D.a>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)系中,A(-1,0),B(1,0),若曲線C上存在一點(diǎn)P,使∠APB為鈍角,則稱曲線上有鈍點(diǎn),下列曲線中“有鈍點(diǎn)的曲線”是( 。
①x2=4y;  ②$\frac{x^2}{3}+\frac{y^2}{2}=1$;  ③x2-y2=1;  ④(x-2)2+(y-2)2=4;  ⑤3x+4y=4.
A.①②④B.①②⑤C.①④⑤D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的極坐標(biāo)方程為ρcos2θ+8cosθ-ρ=0,直線l的參數(shù)方程$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t為參數(shù),0≤α<π).
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l過定點(diǎn)(1,0),求直線l被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.平面直角坐標(biāo)系xOy中,曲線C:(x-1)2+y2=1.直線l經(jīng)過點(diǎn)P(m,0),且傾斜角為$\frac{π}{6}$.以O(shè)為極點(diǎn),以x軸正半軸為極軸,建立坐標(biāo)系.
(Ⅰ)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),且|PA|•|PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x0∈R,使sinx0=$\frac{{\sqrt{5}}}{2}$;命題q:?x∈(0,$\frac{π}{2}$),x>sinx,則下列判斷正確的是( 。
A.p為真B.¬q為假C.p∧q為真D.p∨q為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知y=ax2+bx(a<0)通過點(diǎn)(1,2),且其圖象與y=-x2+2x的圖象有二個(gè)交點(diǎn)(如圖所示).
(Ⅰ)求y=ax2+bx與y=-x2+2x所圍成的面積S與a的函數(shù)關(guān)系;
(Ⅱ)當(dāng)a,b為何值時(shí),S取得最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案