命題“對任意函數(shù)f(x),[f(x)]2+[f′(x)]2≠1”的否定是


  1. A.
    不存在函數(shù)f(x),使[f(x)]2+[f′(x)]2=1
  2. B.
    不存在函數(shù)f(x),使[f(x)]2+[f′(x)]2≠1
  3. C.
    存在函數(shù)f(x),滿足[f(x)]2+[f′(x)]2≠1
  4. D.
    存在函數(shù)f(x),滿足[f(x)]2+[f′(x)]2=1
D
分析:題中含有關(guān)鍵詞:“對任意”,說明原命題是一個全稱命題,要對它進(jìn)行否定要先改量詞為“存在一個”,再否定結(jié)論,便之成為存在性命題,這樣就可選出正確答案.
解答:原命題“對任意函數(shù)f(x),[f(x)]2+[f′(x)]2≠1”是一個全稱命題
否定時,應(yīng)先將前提改為:“存在一個函數(shù)f(x),”
再對結(jié)論進(jìn)行否定:“[f(x)]2+[f′(x)]2=1”
故否定的命題應(yīng)該是這樣:“存在一個函數(shù)f(x),[f(x)]2+[f′(x)]2=1”
故選D
點(diǎn)評:本題考查了含有量詞的命題的否定,屬于基礎(chǔ)題.抓住命題中關(guān)鍵詞,判斷其是一個全稱命題還是一個存在性命題,然后按照規(guī)律加以否定,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的函數(shù)f(x)=sin(x+?)有以下命題:
①對任意的?,f(x)都是非奇非偶函數(shù);
②不存在?,使f(x)既是奇函數(shù),又是偶函數(shù);
③存在?,使f(x)是奇函數(shù);         
④對任意的?,f(x)都不是偶函數(shù);
其中一個假命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“對任意函數(shù)f(x),[f(x)]2+[f′(x)]2≠1”的否定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 高三數(shù)學(xué) 蘇教版(新課標(biāo)·2004年初審) 蘇教版 題型:022

關(guān)于x的函數(shù)f(x)=cos(x+α)有以下命題:①對任意α,f(x)都是非奇非偶函數(shù);②不存在α,使f(x)既是奇函數(shù),又是偶函數(shù);③存在α,使f(x)是偶函數(shù);④對任意α,f(x)都不是奇函數(shù).其中一個假命題的序號是________,因?yàn)楫?dāng)α=________時,該命題的結(jié)論不成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省高考數(shù)學(xué)最新押題卷(文科)(解析版) 題型:選擇題

命題“對任意函數(shù)f(x),[f(x)]2+[f′(x)]2≠1”的否定是( )
A.不存在函數(shù)f(x),使[f(x)]2+[f′(x)]2=1
B.不存在函數(shù)f(x),使[f(x)]2+[f′(x)]2≠1
C.存在函數(shù)f(x),滿足[f(x)]2+[f′(x)]2≠1
D.存在函數(shù)f(x),滿足[f(x)]2+[f′(x)]2=1

查看答案和解析>>

同步練習(xí)冊答案