5.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-x-1}$的單調(diào)遞減區(qū)間是[$\frac{1}{2}$,+∞).

分析 令t=x2-x-1,則y=${(\frac{1}{2})}^{t}$,本題即求函數(shù)t的增區(qū)間,再利用二次函數(shù)的性值可得結(jié)論.

解答 解:令t=x2-x-1=${(x-\frac{1}{2})}^{2}$+$\frac{3}{4}$,則y=${(\frac{1}{2})}^{t}$,本題即求函數(shù)t的增區(qū)間.
再利用二次函數(shù)的性值可得函數(shù)t的增區(qū)間為[$\frac{1}{2}$,+∞),
故答案為:[$\frac{1}{2}$,+∞).

點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,指數(shù)函數(shù)、二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在等比數(shù)列{an}中,a2=4,a6=8a3
(1)求an
(2)令bn=log2an,求數(shù)列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在銳角△ABC中,角A、B、C所對的邊分別是a、b、c,O為△ABC的外心.若b=2,則$\overrightarrow{AC}$•$\overrightarrow{AO}$=(  )
A.2B.4C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.連結(jié)正十二面體各面中心得到一個( 。
A.正六面體B.正八面體C.正十二面體D.正二十面體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA、CB于點E、F,點G是AD的中點.$GE=BD=2,EC=\frac{9}{5}$.
(1)求證:GE是⊙O的切線;
(2)求sin∠DCB值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知等差數(shù)列{an}的前n項和為Sn,若S10=1,S30=5,則S40=( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用斜二測畫法畫一個周長為4的矩形的直觀圖,此直觀圖面積的最大值為(  )
A.$2\sqrt{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.樹德中學(xué)高一數(shù)學(xué)興趣班某同學(xué)探究發(fā)現(xiàn):△ABC的內(nèi)角A,B,C所對的邊為a,b,c;在△ABC中有以下結(jié)論:
①若ab>c2;則0<C<$\frac{π}{3}$;
②若a+b>2c;則0<C<$\frac{π}{3}$;
③若a,b,c成等比數(shù)列(即b2=ac),則0<B≤$\frac{π}{3}$;
④若a2,b2,c2成等比數(shù)列,亦有0<B≤$\frac{π}{3}$;
他留下了下面兩個問題,請你完成:
(I)若a,b,c成等差數(shù)列,證明:sin A+sin C=2sin(A+C);
(II)若a2,b2,c2成等差數(shù)列,求B的取值范圍.
(參考公式:(1)x,y∈R,x2+y2≥2xy;(2)x,y∈R+,x+y≥2$\sqrt{xy}$;當(dāng)且僅當(dāng)x=y時取等)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項和為Sn=2n-1+k,則f(x)=x3-kx2-2x+1的極大值為( 。
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

同步練習(xí)冊答案