【題目】2019年10月1日是新中國的第70個(gè)國慶日,莊重的閱兵、歡樂的游行、熱烈的聯(lián)歡盡顯祖國的繁榮昌盛.為了了解當(dāng)天某校900名高三學(xué)生的觀看情況,從中抽取了100名學(xué)生,情況如下表所示:
觀看情況 | 電視觀看 | 網(wǎng)絡(luò)觀看 | 沒有觀看 |
人數(shù) | 35 | 60 | 5 |
新時(shí)代下,網(wǎng)絡(luò)觀看使用最多的是手機(jī),其它還有電腦、ipad等.“是否使用手機(jī)觀看”與“學(xué)生的性別”之間對應(yīng)的列聯(lián)表如下:
使用手機(jī)觀看 | 其它方式觀看 | 合計(jì) | |
男學(xué)生 | 20 | 8 | 28 |
女學(xué)生 | 20 | 12 | 32 |
合計(jì) | 40 | 20 | 60 |
(1)估計(jì)該校高三學(xué)生當(dāng)天的觀看人數(shù).
(2)當(dāng)天沒有觀看的5名學(xué)生中,有3人第二天觀看了重播.從這5名學(xué)生中任選2人求這2人第二天都看了重播的概率;
(3)根據(jù)列聯(lián)表判斷,能否有95%的把握認(rèn)為網(wǎng)絡(luò)觀看的學(xué)生中“是否使用手機(jī)觀看”與“學(xué)生的性別”有關(guān)?
附:,其中.
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
【答案】(1)855(2)(3)沒有
【解析】
(1)用樣本估計(jì)總體,按比例計(jì)算即得;
(2)把5人編號,可列出任取2人的所有情形,并得出第二天都看了重播的所有可能,計(jì)數(shù)后可得概率;
(3)根據(jù)所給數(shù)據(jù)計(jì)算后可得結(jié)論.
(1)該校高三學(xué)生當(dāng)天的觀看人數(shù)約為(人).
(2)當(dāng)天沒有觀看的5名學(xué)生中,將第二天看了重播的記為1,2,3,第二天沒有看重播的記為a,b.從中任選2人的基本事件為,,,,,,,,,,共10個(gè).
記“選到的2名學(xué)生第二天都看了重播”為事件A,則其包含的基本事件有,,,共3個(gè),
故所求的概率.
(3)的觀測值.
由于,故沒有95%的把握認(rèn)為網(wǎng)絡(luò)觀看的學(xué)生中“是否使用手機(jī)觀看”與“學(xué)生的性別”有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,是橢圓短軸的一個(gè)頂點(diǎn),并且是面積為的等腰直角三角形.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),過作與軸垂直的直線,已知點(diǎn),問直線與的交點(diǎn)的橫坐標(biāo)是否為定值?若是,則求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是等差數(shù)列,公差為,前項(xiàng)和為.
(1)設(shè),,求的最大值.
(2)設(shè),,數(shù)列的前項(xiàng)和為,且對任意的,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為、,是與的等差中項(xiàng),其中、、都是正數(shù),過點(diǎn)和的直線與原點(diǎn)的距離為.
(1)求橢圓的方程;
(2)點(diǎn)是橢圓上一動(dòng)點(diǎn),定點(diǎn),求△面積的最大值;
(3)已知定點(diǎn),直線與橢圓交于、相異兩點(diǎn).證明:對任意的,都存在實(shí)數(shù),使得以線段為直徑的圓過點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱是“回歸數(shù)列”.
(1)①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
(2)設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值;
(3)是否對任意的等差數(shù)列,總存在兩個(gè)“回歸數(shù)列”和,使得成立,請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為2,離心率,
(1)求橢圓方程;
(2)若直線與橢圓交于不同的兩點(diǎn),與圓相切于點(diǎn),
①證明:(其中為坐標(biāo)原點(diǎn));
②設(shè),求實(shí)數(shù)的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1,F2,離心率為,過F1的直線l與橢圓C交于M,N兩點(diǎn),且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點(diǎn),且OA⊥OB,試問點(diǎn)O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com