精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左右焦點分別為,是橢圓短軸的一個頂點,并且是面積為的等腰直角三角形.

(1)求橢圓的方程;

(2)設直線與橢圓相交于兩點,過作與軸垂直的直線,已知點,問直線的交點的橫坐標是否為定值?若是,則求出該定值;若不是,請說明理由.

【答案】(1);(2)交點的橫坐標為定值2,理由見解析

【解析】

1)根據題中的條件,寫出橢圓的焦點的坐標,利用等腰直角三角形的條件,得出的關系,從而求得其值,從而得出橢圓的方程,得到結果;

2)設出直線與橢圓的兩個交點的坐標,聯(lián)立方程組,利用韋達定理得到,寫出直線的方程:,令,整理得出其橫坐標,從而證得其為定值,得到結果.

(1)由已知得,設

是面積為1的等腰直角三角形,

橢圓的方程為

(2)設

直線的方程:

交點的橫坐標為定值2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn.已知S2=4,an+1=2Sn+1,n∈N*

(1)求通項公式an;

(2)求數列{|an-n-2|}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】20名學生某次數學考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學生人數;

(3)從成績在[50,70)的學生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點為、,,若圓Q方程,且圓心Q在橢圓上.

1)求橢圓的方程;

2)已知直線交橢圓A、B兩點,過直線上一動點P作與垂直的直線交圓QC、D兩點,M為弦CD中點,的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,以O為圓心的圓與直線相切.

(1)求圓O的方程.

(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線過點,且P到拋物線焦點的距離為2直線過點,且與拋物線相交于A,B兩點.

(Ⅰ)求拋物線的方程;

(Ⅱ)若點Q恰為線段AB的中點,求直線的方程;

(Ⅲ)過點作直線MA,MB分別交拋物線于C,D兩點,請問C,D,Q三點能否共線?若能,求出直線的斜率;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在半徑為常量,圓心角為變量的扇形內作一內切圓,再在扇形內作一個與扇形兩半徑相切并與圓外切的小圓,設圓的半徑為,則的半徑為.

1)求的取值范圍;

2)求圓面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)試判斷函數上的單調性,并說明理由;

2)若是在區(qū)間上的單調函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為t為參數),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線l的普通方程和曲線C的直角坐標方程;

2)設P0,-1),直線lC的交點為M,N,線段MN的中點為Q,求.

查看答案和解析>>

同步練習冊答案