【題目】已知橢圓的左右焦點分別為,是橢圓短軸的一個頂點,并且是面積為的等腰直角三角形.
(1)求橢圓的方程;
(2)設直線與橢圓相交于兩點,過作與軸垂直的直線,已知點,問直線與的交點的橫坐標是否為定值?若是,則求出該定值;若不是,請說明理由.
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn.已知S2=4,an+1=2Sn+1,n∈N*.
(1)求通項公式an;
(2)求數列{|an-n-2|}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】20名學生某次數學考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率直方圖中a的值;
(2)分別求出成績落在[50,60)與[60,70)中的學生人數;
(3)從成績在[50,70)的學生中人選2人,求這2人的成績都在[60,70)中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點為、,,若圓Q方程,且圓心Q在橢圓上.
(1)求橢圓的方程;
(2)已知直線交橢圓于A、B兩點,過直線上一動點P作與垂直的直線交圓Q于C、D兩點,M為弦CD中點,的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,以O為圓心的圓與直線相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點,在圓O上是否存在一點M,使得四邊形為菱形?若存在,求出此時直線l的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線過點,且P到拋物線焦點的距離為2直線過點,且與拋物線相交于A,B兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點Q恰為線段AB的中點,求直線的方程;
(Ⅲ)過點作直線MA,MB分別交拋物線于C,D兩點,請問C,D,Q三點能否共線?若能,求出直線的斜率;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在半徑為常量,圓心角為變量的扇形內作一內切圓,再在扇形內作一個與扇形兩半徑相切并與圓外切的小圓,設圓的半徑為,則的半徑為.
(1)求的取值范圍;
(2)求圓面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),以原點O為極點,x正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設P(0,-1),直線l與C的交點為M,N,線段MN的中點為Q,求.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com