若函數(shù)f(x)=sinωx+
3
cosωx(x∈R),又f(α)=-2,f(β)=0,且|α-β|的最小值為
4
,則正數(shù)ω的值是( 。
分析:先化簡f(x),分別有f(α)=-2,f(β)=0解出α,β,由此可表示出|α-β|的最小值,令其等于
4
,可求得正數(shù)ω的值.
解答:解:f(x)=2sin(ωx+
π
3
),
由f(α)=-2,得ωα+
π
3
=2k1π-
π
2
,k1∈Z
,∴α=
2k1π
ω
-

由f(β)=0,得ωβ+
π
3
=k2π,k2∈Z,∴β=
k2π
ω
-
π
,
則α-β=
2(k1-k2
ω
-
π
=
4(k1-k2)π-π
=
(4k-1)π
,k∈Z

當(dāng)k=0時(shí)|α-β|取得最小值
π
,則
π
=
4
,解得ω=
2
3
,
故選C.
點(diǎn)評(píng):本題考查三角函數(shù)的恒等變換、解簡單的三角方程,考查學(xué)生解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(3x+φ)的圖象關(guān)于直線x=
3
對(duì)稱,則φ的最小正值等于( 。
A、
π
8
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(x+?)是偶函數(shù),則?可取的一個(gè)值為                  ( 。
A、?=-π
B、?=-
π
2
C、?=-
π
4
D、?=-
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個(gè)增區(qū)間是[
12
,
11π
12
];
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對(duì)于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④函數(shù)y=2sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱.
其中正確的命題是
 
.(填上正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(ωx+φ)(|φ|<
π
2
)的圖象(部分)如圖所示,則f(x)的解析式是
f(x)=sin(
1
2
x+
π
6
f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin(ωx+
π
4
)的圖象的相鄰兩條對(duì)稱軸之間的距離等于
π
3
,則ω=
±3
±3

查看答案和解析>>

同步練習(xí)冊答案