1.已知復(fù)數(shù)Z滿足Z•(1-2i)=5i,則復(fù)數(shù)Z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:∵Z•(1-2i)=5i,∴Z•(1-2i)(1+2i)=5i(1+2i),∴5z=5i-10,∴z=-2+i.
則復(fù)數(shù)Z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)(-2,1)位于第二象限.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x-1+$\frac{a}{{e}^{x}}$.
(Ⅰ)若函數(shù)f(x) 在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)0<θ<$\frac{π}{2}$,向量$\overrightarrow{a}$=(sin 2θ,cos θ),$\overrightarrow$=(1,-cosθ),若$\overrightarrow a⊥\overrightarrow b$,則tan θ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從所有的兩位數(shù)中任取一個數(shù),則這個數(shù)能被2或3整除的概率是( 。
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,△ACC1≌△B1 CC1,CA⊥C1 A且CA=C1 A=2.
(1)求證:AB1丄CC1,
(2)若AB1=2,求四棱錐A-BCC1B1,的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-2|a+2|x+a2+4a+6,g(x)=x-a+6,a∈R.
(1)若函數(shù)f(x)滿足f(2-x)=f(2+x)恒成立,求實(shí)數(shù)a的值;
(2)設(shè)函數(shù)h(x)=$\left\{\begin{array}{l}{f(x),f(x)≤g(x)}\\{g(x),f(x)>g(x)}\end{array}\right.$,若對任意實(shí)數(shù)a∈[-1,3],存在x0∈[-1,3]使不等式h(x0)≤m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.解不等式$\sqrt{{x}^{2}-x-6}$<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某工廠要建造一個長方形無蓋蓄水池,其容積為4800m3,深為3m.如果池底每平方米的造價為120元,池壁每平方米的造價為150元,怎么設(shè)計水池能使總造價最低?最低總造價為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.命題“?x0∈R,sinx0+2x02>cosx0”的否定為?x∈R,sinx+2x2≤cosx.

查看答案和解析>>

同步練習(xí)冊答案