精英家教網 > 高中數學 > 題目詳情

分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且,求點的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。

(Ⅰ)(Ⅱ)

解析試題分析:(Ⅰ)易知。

聯立,解得, 
(Ⅱ)顯然 可設
聯立
 
   得 ①

 又

 ②
綜①②可知 
考點:橢圓方程性質及直線與橢圓的位置關系
點評:直線與橢圓相交時常聯立方程,利用韋達定理轉化較簡單,條件中將轉化為向量表示,進而與A,B坐標聯系起來,即可利用韋達定理

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;
(2)過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為 
(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,∥l且與曲線C的交點A、B滿足;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知橢圓的中心在原點,其上、下頂點分別為,點在直線上,點到橢圓的左焦點的距離為.

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是橢圓上異于的任意一點,點軸上的射影為,的中點,直線交直線于點,的中點,試探究:在橢圓上運動時,直線與圓:的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的上頂點為,左焦點為,直線與圓相切.過點的直線與橢圓交于兩點.
(I)求橢圓的方程;
(II)當的面積達到最大時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點為,點是點關于軸的對稱點,過點的直線交拋物線于兩點。
(1)試問在軸上是否存在不同于點的一點,使得軸所在的直線所成的銳角相等,若存在,求出定點的坐標,若不存在說明理由。
(2)若的面積為,求向量的夾角;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線的漸近線方程為,左焦點為F,過的直線為,原點到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點CD,問是否存在實數,使得以CD為直徑的圓經過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知拋物線的焦點為,過焦點且不平行于軸的動直線交拋物線于兩點,拋物線在兩點處的切線交于點.

(Ⅰ)求證:,,三點的橫坐標成等差數列;
(Ⅱ)設直線交該拋物線于,兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是橢圓的左、右焦點,O為坐標原點,點P在橢圓上,線段與y軸的交點M滿足
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點,當,且滿足時,求直線的方程。

查看答案和解析>>

同步練習冊答案