如圖,已知拋物線的焦點為,過焦點且不平行于軸的動直線交拋物線于,兩點,拋物線在、兩點處的切線交于點.

(Ⅰ)求證:,三點的橫坐標成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點,求四邊形面積的最小值.

(Ⅰ)可設(shè)直線的方程),,,由消去,得,. ,,由,得,所以,直線的斜率為直線的方程為 同理,直線的方程為  M的橫坐標,三點的橫坐標成等差數(shù)列(Ⅱ)32

解析試題分析:(Ⅰ)由已知,得,顯然直線的斜率存在且不為0,則可設(shè)直線的方程
),,,

消去,得,
. ,         2分
,得,所以,直線的斜率為
所以,直線的方程為,又,
所以,直線的方程為      ①         4分
同理,直線的方程為      ②          5分
②-①并據(jù)得點M的橫坐標,
,,三點的橫坐標成等差數(shù)列          7分
(Ⅱ)由①②易得y=-1,所以點M的坐標為(2k,-1)().
所以,則直線MF的方程為          8分
設(shè)C(x3,y3),D(x4,y4), 由消去,得,
,.             9分

               10分

         12分
因為,所以,
所以,
當且僅當時,四邊形面積的取到最小值         14分
考點:拋物線方程及直線與拋物線的相交的位置關(guān)系弦長等
點評:當直線與圓錐曲線相交時,常聯(lián)立方程組轉(zhuǎn)化為關(guān)于x的二次方程,進而利用方程的根與系數(shù)的關(guān)系設(shè)而不求的方法化簡,在求解時弦長公式經(jīng)常用到,本題中函數(shù)在某一點的切線問題要借助于導(dǎo)數(shù)的幾何意義求出切線斜率

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)斜率為1的直線l與橢圓C相交于,兩點,連接MA,MB并延長交直線x=4于P,Q兩點,設(shè)yP,yQ分別為點P,Q的縱坐標,且.求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點,且,求點的坐標。
(Ⅱ)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,短軸的一個端點到右焦點的距離為,直線交橢圓于不同的兩點
(1)求橢圓的方程;
(2)若坐標原點到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在橢圓上找一點,使這一點到直線的距離為最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知M (-3,0)﹑N (3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點P的軌跡加上M、N兩點構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為的直線與曲線C交于不同的兩點AB,AB中點為R,直線OR (O為坐標原點)的斜率為,求證 為定值;
(3) 在(2)的條件下,設(shè),且,求y軸上的截距的變化范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為:2.(1)過點C(-1,0)且以向量為方向向量的直線交橢圓于不同兩點A、B,若,則當△OAB的面積最大時,求橢圓的方程。
(2)設(shè)M,N為橢圓上的兩個動點,,過原點O作直線MN的垂線OD,垂足為D,求點D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)雙曲線與橢圓+=1有公共的焦點,且與橢圓相交,它們的交點中一個交點的縱坐標是4,求雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

己知橢圓的離心率為是橢圓的左右頂點,是橢圓的上下頂點,四邊形的面積為.
(1)求橢圓的方程;
(2)圓兩點.當圓心與原點的距離最小時,求圓的方程.

查看答案和解析>>

同步練習冊答案