已知直線的參數(shù)方程:.
(1)求圓的圓心坐標(biāo)和半徑;
(2)設(shè)圓上的動點(diǎn),求的最大值.
(1)圓心的坐標(biāo)為:,半徑為2 。(2)的最大值為
解析試題分析:(1)即,,所以,圓心的坐標(biāo)為,半徑為2 (4分)
(2)設(shè),,則
(6分)
(8分)
當(dāng)時(shí),的最大值為
考點(diǎn):參數(shù)方程與普通方程的互化,參數(shù)方程的應(yīng)用。
點(diǎn)評:中檔題,參數(shù)方程化為普通方程,常用的“消參”方法有,代入消參、加減消參、平方關(guān)系消參等。利用參數(shù)方程,往往會將問題轉(zhuǎn)化成三角函數(shù)問題,利用三角公式及三角函數(shù)的圖象和性質(zhì),化難為易。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
過點(diǎn)P作傾斜角為α的直線與曲線x2+2y2=1交于點(diǎn)M、N,求|PM|·|PN|的最小值及相應(yīng)的α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓、是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,求過橢圓(為參數(shù))的右焦點(diǎn)且與直線(為參數(shù))平行的直線的普通方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為,直線l經(jīng)過點(diǎn)P(2,2),傾斜角。
(1)寫出圓的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(2)設(shè)l與圓C相交于A、B兩點(diǎn),求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
【選修4—4:坐標(biāo)系與參數(shù)方程】
已知圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(I)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(II)圓、是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)選修4 -4 :坐標(biāo)系與參數(shù)方程
將圓上各點(diǎn)的縱坐標(biāo)壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0
繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得直線記作l
.(I)求直線l與曲線C的方程;
(II)求C上的點(diǎn)到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選修4—4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線,
過點(diǎn)A(5,α)(α為銳角且)作平行于的直線,且與曲線L分別交于B,C兩點(diǎn)。
(Ⅰ)以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,取與極坐標(biāo)相同單位長度,建立平面直角坐標(biāo)系,寫出曲線L和直線的普通方程;
(Ⅱ)求|BC|的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)某大學(xué)的女生體重(單位:)與身高(單位:)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( )
A.與具有正的線性相關(guān)關(guān)系 |
B.回歸直線過樣本點(diǎn)的中心 |
C.若該大學(xué)某女生身高增加,則其體重約增加 |
D.若該大學(xué)某女生身高為,則可斷定其體重為 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com