【題目】某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此做了四次試驗(yàn),得到的數(shù)據(jù)如表:
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)求出y關(guān)于x的線(xiàn)性回歸方程 ;
(2)試預(yù)測(cè)加工10個(gè)零件需要多少小時(shí)?
(參考公式: = = ; ;)
【答案】
(1)解:由表中數(shù)據(jù)得: = =3.5,
= =3.5,
=52.5,
=54,
∴ = =0.7,
∴ =1.05,
∴線(xiàn)性回歸方程是 =0.7x+1.05
(2)解:將x=10代入回歸直線(xiàn)方程,
得 =0.7×10+1.05=8.05,
∴預(yù)測(cè)加工10個(gè)零件需要8.05小時(shí)
【解析】(1)由表中數(shù)據(jù),計(jì)算平均數(shù)和回歸系數(shù),寫(xiě)出回歸直線(xiàn)方程即可;(2)將x=10代入回歸直線(xiàn)方程,計(jì)算對(duì)應(yīng) 的值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿(mǎn)足,且是, 的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿(mǎn)足,求數(shù)列的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)使得數(shù)列()是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某算法的流程圖如圖所示,運(yùn)行相應(yīng)程序,輸出S的值是( )
A.60
B.61
C.62
D.63
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2014年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | [160,165) | 5 | 0.050 |
第2組 | [165,170) | n | 0.350 |
第3組 | [170,175) | 30 | p |
第4組 | [175,180) | 20 | 0.200 |
第5組 | [180,185] | 10 | 0.100 |
合計(jì) | 100 | 1.000 |
(1)求頻率分布表中n,p的值,并補(bǔ)充完整相應(yīng)的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函數(shù)f(x)= ﹣ cos2x
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線(xiàn)與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長(zhǎng);
(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒(méi)摸出紅球,則不打折.
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿(mǎn)1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=3ax2+2bx+c,且有a+b+c=0,f(0)>0,f(1)>0.
(Ⅰ)求證:a>0,且﹣2< <﹣1;
(Ⅱ)求證:函數(shù)y=f(x)在區(qū)間(0,1)內(nèi)有兩個(gè)不同的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】福利彩票“雙色球”中紅球的號(hào)碼可以從01,02,03,…,32,33這33個(gè)二位號(hào)碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個(gè)號(hào)碼,選取方法是從第1行第9列和第10列的數(shù)字開(kāi)始從左到右依次選取兩個(gè)數(shù)字,則第四個(gè)被選中的紅色球號(hào)碼為( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com