函數(shù),則的自變量的取值范圍為( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省沐陽(yáng)縣高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)在區(qū)間上的最大值為4,則實(shí)數(shù)的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河北邢臺(tái)一中高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)為拋物線的焦點(diǎn),點(diǎn)P是拋物線上的一動(dòng)點(diǎn),則取得最小值時(shí),點(diǎn)P的坐標(biāo)是 _______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)根據(jù)如圖所示的程序框圖,將輸出a,b的值依次分別記為a1,a2, ,an, ,a2008;b1,b2, ,bn, ,b2008.
(Ⅰ)求數(shù)列 { an } 的通項(xiàng)公式;
(Ⅱ)寫出b1,b2,b3,b4,由此猜想{ bn }的通項(xiàng)公式,并證明你的證明;
(Ⅲ)在 ak 與 ak+1 中插入bk+1個(gè)3得到一個(gè)新數(shù)列 { cn } ,設(shè)數(shù)列 { cn }的前n項(xiàng)和為Sn,問是否存在這樣的正整數(shù)m,使數(shù)列{ cn }的前m項(xiàng)的和,如果存在,求出m的值,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè).若是 與的等比中項(xiàng),則的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
一枚硬幣連擲2次,只有一次出現(xiàn)正面的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省山一等七校高三12月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)某中學(xué)校本課程共開設(shè)了共門選修課,每個(gè)學(xué)生必須且只能選修門選修課,現(xiàn)有該校的甲、乙、丙名學(xué)生.
(Ⅰ)求這名學(xué)生選修課所有選法的總數(shù);
(Ⅱ)求恰有門選修課沒有被這名學(xué)生選擇的概率;
(Ⅲ)求選修課被這名學(xué)生選擇的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省肇慶市畢業(yè)班第一次統(tǒng)一檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)設(shè)a為常數(shù),且.
(1)解關(guān)于x的不等式;
(2)解關(guān)于x的不等式組.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省四地六校高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知橢圓:()的長(zhǎng)半軸長(zhǎng)為2,離心率為,左右焦點(diǎn)分別為,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓交于,兩點(diǎn),與以,為直徑的圓交于,兩點(diǎn),且滿足,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com