分析 畫出可行域,利用C:(x-4)2+(y-3)2=4與區(qū)域Ω有公共點(diǎn)S取得最小值時(shí),直線與圓相切,求出k的值,然后求解面積為S的最小值.
解答 解:不等式$\left\{\begin{array}{l}x≥0\\ y≥0\\ y≤-kx+4k\end{array}\right.$,(其中k>0)在平面直角坐標(biāo)系中所表示的區(qū)域?yàn)棣,如圖:
在平面直角坐標(biāo)系中所表示的區(qū)域?yàn)棣,C:(x-4)2+(y-3)2=4與區(qū)域Ω有公共點(diǎn),S取得最小值時(shí),
直線與圓相切,則
可得:$\frac{3}{\sqrt{1+{k}^{2}}}$=2,k>0,k=$\frac{\sqrt{5}}{2}$,
∴S=$\frac{1}{2}×4×2\sqrt{5}$=4$\sqrt{5}$.
故答案為4$\sqrt{5}$.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查直線與圓的位置關(guān)系,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)g(x)在區(qū)間$[{0,\frac{π}{2}}]$上單調(diào)遞增 | B. | 函數(shù)f(x)與g(x)的最小正周期均為π | ||
C. | 函數(shù)g(x)在區(qū)間$[{0,\frac{π}{2}}]$上的最大值為$\frac{{\sqrt{3}}}{2}$ | D. | 函數(shù)g(x)的對(duì)稱中心為$({\frac{Kπ}{2}+\frac{π}{6},0})$(K∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>-2} | B. | {x|x<-2} | C. | {x|x>-1} | D. | {x|x≤-2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com