數(shù)的單調(diào)遞增區(qū)間為(      )

A.(-∞,1)       B.(2,+∞)        C.(-∞,)      D.(,+∞)

 

【答案】

A

【解析】

試題分析:由得:

,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013111423140843658481/SYS201311142314189720866040_DA.files/image004.png">,所以的單調(diào)遞增區(qū)間為(-∞,1)。

考點(diǎn):復(fù)合函數(shù)的單調(diào)性。

點(diǎn)評:判斷復(fù)合函數(shù)的單調(diào)性,只需要滿足四個字:同增異減,但一定要注意先求函數(shù)的定義域。本題易錯的地方是:忘記求定義域而導(dǎo)致選錯誤答案C。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
12
x2+x
,g(x)=2a2lnx+(a+1)x.
(1)求過點(diǎn)(2,4)與曲線y=f(x)相切的切線方程;
(2)如果函數(shù)g(x)在定義域內(nèi)存在導(dǎo)數(shù)為零的點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)設(shè)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三上學(xué)期第三次月考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知向量,函數(shù)·

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;

(2)如果△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角為x,試求x的范圍及此時(shí)函

數(shù)f(x)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省寧波市柔石中學(xué)高三(上)月考數(shù)學(xué)試卷3(解析版) 題型:解答題

已知函數(shù),g(x)=2a2lnx+(a+1)x.
(1)求過點(diǎn)(2,4)與曲線y=f(x)相切的切線方程;
(2)如果函數(shù)g(x)在定義域內(nèi)存在導(dǎo)數(shù)為零的點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)設(shè)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

【解析】第一問定義域?yàn)檎鏀?shù)大于零,得到.                            

,則,所以,得到結(jié)論。

第二問中, ().

.                          

因?yàn)?<a<2,所以,.令 可得

對參數(shù)討論的得到最值。

所以函數(shù)上為減函數(shù),在上為增函數(shù).

(I)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">.           ………………………1分

.                            

,則,所以.  ……………………3分          

因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.                            

,則,所以

因?yàn)槎x域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091228013432358116_ST.files/image005.png">,所以.          ………………………5分

所以函數(shù)的單調(diào)遞增區(qū)間為,

單調(diào)遞減區(qū)間為.                         ………………………7分

(II) ().

.                          

因?yàn)?<a<2,所以,.令 可得.…………9分

所以函數(shù)上為減函數(shù),在上為增函數(shù).

①當(dāng),即時(shí),            

在區(qū)間上,上為減函數(shù),在上為增函數(shù).

所以.         ………………………10分  

②當(dāng),即時(shí),在區(qū)間上為減函數(shù).

所以.               

綜上所述,當(dāng)時(shí),;

當(dāng)時(shí),

 

查看答案和解析>>

同步練習(xí)冊答案