(2012•河西區(qū)二模)已知正實數(shù)a,b滿足
2
a
+
1
b
=1
,則a+2b的最小值為
8
8
分析:利用基本不等式進行求解,即可.
解答:解:因為正實數(shù)a,b滿足
2
a
+
1
b
=1
,則a+2b=(a+2b)(
2
a
+
1
b
)=4+
4b
a
+
a
b
≥4+2
4b
a
?
a
b
=4+4=8

當且僅當
4b
a
=
a
b
,即a2=4b2,a=2b時取等號.
所以最小值為8.
點評:本題主要考查基本不等式的應用,注意不等式的使用條件,利用1的代換是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•河西區(qū)二模)已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦距為2
3
,離心率為
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過橢圓頂點B(0,b),斜率為k的直線交橢圓于另一點D,交x軸于點E,且|BD|,|BE|,|DE|成等比數(shù)列,求k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河西區(qū)二模)把函數(shù)y=cos2(x+
3
)
的圖象向右平移φ(φ>0)個單位后圖象關(guān)于y軸對稱,則φ的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河西區(qū)二模)已知復數(shù)z=
m+2i
3-4i
為實數(shù),則實數(shù)m的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河西區(qū)二模)閱讀如圖的程序框圖,運行相應的程序,則輸出的a的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•河西區(qū)二模)函數(shù)f(x)=log3x-(
1
3
)x
的零點所在區(qū)間是(  )

查看答案和解析>>

同步練習冊答案